期刊文献+

基于协同增益的联合编队作战任务群聚合模型 被引量:2

The Joint Fleet Combat Task Group Polymerization Model Based on Coordinative Plus
下载PDF
导出
摘要 作战任务群是联合编队遂行各种作战任务的主要组织形式,兵力聚合是构建作战任务群的有效途径,文中将模糊聚类(FCA)法应用于作战任务群聚合。在研究聚合原则、聚合结构的基础上,提出兵力间协同的增益效应,并建立了协同增益模型。将协同增益模型和FCA相结合,建立了作战任务群聚合模型(PFCM)。模型着力解决互联、互通、互操作能力逐步增强条件下各个作战单元协同效应的实现,是提高联合编队作战协同能力的有效途径。 Combat task group is the main format to carry out the task for joint fleet, forces polymerization is a good approach to establish combat task group, fuzzy clustering analysis is applied to combat task polymerization in the paper. The coordinative plus is brought forward, the coordinative plus model is established in the paper based on the principle and configuration. The PFCM is brought forward through the coordinative plus model and FCA. The model will be used to realize the coordinative effect, It is the effective approach to improve the joint fleet coordinative capability.
出处 《指挥控制与仿真》 2010年第1期37-40,44,共5页 Command Control & Simulation
关键词 联合编队 作战任务群 协同增益 模糊聚类分析(FCA) 聚合模型 joint fleet combat task group coordinative plus fuzzy clustering analysis(FCA) polymerization model
  • 相关文献

参考文献7

  • 1Ronald P.S.Mahler. An Extended First-Order Bayes Filter for Force Aggregation. In Proceedings of SPIE-Signai and Data Processing of Small Targets, 2002, Vol 4728, 196-207. 被引量:1
  • 2Ronald P.S. Mahler.Detecting,Tracking and ClassifyingGroup Targets: A Unified Approach. In Proceedings of SPIE-Signal Processing,Sensor Fusion, and Target Recognition X, 2001, Vol 4380, 217-228. 被引量:1
  • 3Bin Yu, Joseph Giampapa, Scan Owens. An Evidential Model of Multisensor Decision Fusion for Force Aggregation and Classification. In Proceedings of Eighth International Conference on Information Fusion, IEEE, 3 Park Avenue, 17th Floor, New York, NY 10016-5997, July, 2005. 被引量:1
  • 4Bin Yu,Joseph Giampapa,Sean Owens,and Katia Sycara.An Evidential Model of Multisensor Decision Fusion for Force Aggregation and Classification.InProceedings of Eighth International Conference on Information Fusion,IEEE,3Park Avenue, 17th Floor, New York, NY 10016-5997,July,2005. 被引量:1
  • 5蔡益朝..态势评估中的兵力聚合技术研究[D].国防科学技术大学,2006:
  • 6Aczel J.. Daroczy Z.. On t he Measure of Information and Their Characterizations[M].New York:Academic Press, 1975. 被引量:1
  • 7沈红斌,杨杰,王士同,董一飞.基于信息理论的合作聚类算法研究[J].计算机学报,2005,28(8):1287-1294. 被引量:8

二级参考文献20

  • 1沈红斌,王士同,吴小俊.离群模糊核聚类算法[J].软件学报,2004,15(7):1021-1029. 被引量:37
  • 2Hopper F.. Fuzzy Cluster Analysis. Chichester: John Wiley, 1999. 被引量:1
  • 3Han Jia-Wei.,Kamber M.. Data Mining: Concept and Techniques. San Mateo: Morgan Kanfmann, 2001. 被引量:1
  • 4Bezdek J.C.. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press, 1981. 被引量:1
  • 5Shen Hong-Bin, Yang Jie, Wang Shi-Tong. Outlier detecting in fuzzy switching regression models. In: Proceedings of the AIMSA'04, Varna, Bulgaria, 2004, 208~215. 被引量:1
  • 6Wu K.L., Yang M.S.. Alternative c-means clustering algorithms. Pattern Recognition, 2002, 35(10): 2267~2278. 被引量:1
  • 7Sun Ying, Zhu Qiu-Ming, Chen Zheng-Xin. An iterative initial-points refinement algorithm for categorical data clustering. Pattern Recognition Letters, 2002, 23(7):875~884. 被引量:1
  • 8Hathaway R., Benzdek J.. Switching regression models and fuzzy clustering. IEEE Transactions on Fuzzy Systems, 1993, 1(3): 195~204. 被引量:1
  • 9Merz P.. Analysis of gene expression profiles: An application of memetic algorithms to the minimum sum-of-squares clustering problem. BioSystems, 2003, 72(11): 99~109. 被引量:1
  • 10Eppstein D.. Fast hierarchical clustering and other applications of dynamic closest pairs. In: Proceedings of the 9th Symposium Discrete Algorithms, San Francisco, 1998, 619~628. 被引量:1

共引文献7

同被引文献48

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部