期刊文献+

基于BP神经网络的野外驻训备件需求预测研究 被引量:6

Research on Spare Part Requirement Prediction of Field Drill Based on BP NN
下载PDF
导出
摘要 针对传统的备件需求预测方法主观性强,缺乏科学性等问题,以通信部队野外驻训为背景,从备件需求影响因素出发,提出一种基于BP神经网络的预测算法。对备件精确保障及需求预测和BP神经网络及其适用范围进行简要介绍,分析了备件需求影响因素,以某型电台的功放模型为样板,对BP神经网络预测算法的适用性进行了检测。结果表明,该方法能很好地提高备件需求预测精度,满足装备保障精确化的要求。 Solving the traditional estimation of spare part requirement is very subjectivity and is not scientifically, put forward an estimation method based on BP neural network (NN) on the background of field drill of communication army by analyzing the influence factors of field drill. It also introduces spare part precise supporting and requirement estimation and BP NN and their acclimatization, analyses the influence factors of field drill, tests the applicability of the BP algorithm on the former of one transmitter-receiver's power amplifier. The result shows that the algorithm can greatly improve precision of spare part estimation, also it can meet the need of accurate maintenance support in future warfare.
出处 《兵工自动化》 2010年第3期33-34,37,共3页 Ordnance Industry Automation
关键词 人工神经网络 需求预测 误差反向传播算法 精确保障 ANN Requirement estimation Error oppositely-directed algorithm Precision support
  • 相关文献

参考文献5

  • 1徐军凯,李勇,梁宇,王俊涛.应用RBF网络的导弹研制费用预测[J].兵工自动化,2007,26(10):55-56. 被引量:3
  • 2葛哲学,孙志强编著..神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2007:337.
  • 3阎平凡,张长水编著..人工神经网络与模拟进化计算 第2版[M].北京:清华大学出版社,2005:639.
  • 4裴帅,王铁宁,陈春良.基于BP神经网络的装备器材需求预测模型[J].装甲兵工程学院学报,2008,22(3):26-28. 被引量:17
  • 5A. Azadeh and Behshtipour. The effect of neural network parameters on the performance of neural network forecasting[J]. The IEEE International Conference on Industries DCC, 2008 (6): 1498-1512. 被引量:1

二级参考文献10

共引文献17

同被引文献80

引证文献6

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部