期刊文献+

基于树突状细胞算法的蠕虫检测模型

WORM DETECTION MODEL BASED ON DENDRITIC CELL ALGORITHM
下载PDF
导出
摘要 树突状细胞算法DCA(Dendritic Cell Algorithm)是受人工免疫学中的危险理论启发的,具有实时检测异常的能力。树突状细胞DC(Dendritic Cell)能够将抗原与环境信号关联起来激活或抑制人体的免疫响应。按照树突状细胞的功能、作用,建立对蠕虫进行实时检测的模型,实验结果显示,模型能够实时地检测出已知蠕虫和未知蠕虫,并且具有效率高、负载小与低误报率的优点。 Dentritic Cell Algorithm is inspired by danger theory in artificial immunology, and has the ability to real - timely detect anomalies. Dentritic Cell has the power to suppress or activate the immune response of human bodies by correlating antigens and signals representing the environment. In this paper we propose a model of worm real-time detection according to Dentritic Cell' s function and effect. The experimental results showed that this model can real-timely detect the known worms and the unknown worms, and has advantages of high efficiency, small load and low rate of false.
出处 《计算机应用与软件》 CSCD 2010年第2期279-282,共4页 Computer Applications and Software
关键词 树突状细胞算法 蠕虫 危险理论 入侵检测 Dendriti cell algorithm Internet worm Danger theory Intrusion detection
  • 相关文献

参考文献9

  • 1Polly Matzinger. The Danger Model: A Renewed Sense of Self[ J]. Science 2002,296:301 - 404. 被引量:1
  • 2Zou C C, Gao L, Gong W, et al. Towsley. Monitoring and Early Warning for Internet Worms[ C ]//Proceedings of 10th ACM Conference on Computer and Communications Security (CCS), New York: ACM Press, 2003:190 - 199. 被引量:1
  • 3Chen Shigang, Tang Yong. Slowing down internet worms [ C ]//Proceedings of 24th International Conference on Distributed Computing Systems ( ICDCS ' 04 ). Tokyo: IEEE Computer Society,2004. 被引量:1
  • 4Bakos G, Berk V H. Early Detection of Internet Worm Activity by Metering ICMP Destination Unreachable Activity. 2002. http://pqsnet. net/papers/dibs. ps. gz. 被引量:1
  • 5田俊峰,张弛,刘涛,李宁.基于本地主机传播行为的蠕虫预警新方法[J].通信学报,2007,28(5):80-89. 被引量:5
  • 6Greensmith J. Introducing dendritic ceils as a novel immune-inspired algorithm for anomaly detection [ C ]//ICARIS-05, LNCS 3627,2005 : 153 - 167. 被引量:1
  • 7Greensmith J, Twycross J, Aickelin U. Dendritic cells for anomaly detection[ C]//IEEE Congress on Evolutionary Computation (CEC 2006) ,2006:664 - 671. 被引量:1
  • 8David Moore, Colleen Shannon, Jeffery Brown. Code-Red: A Case Study on the Spread and Victims of an Internet Worm [ C ]//Proceedings of the 2002 ACM SICGOMM Internet Measurement Workshop . 2002:273 - 284. 被引量:1
  • 9CCERT.CCERT关于W32.Nachi.Worm蠕虫公告[EB/OL].2003.http://www.ecert.edu.cn/announce/show.php?handle=93. 被引量:1

二级参考文献19

  • 1卿斯汉,文伟平,蒋建春,马恒太,刘雪飞.一种基于网状关联分析的网络蠕虫预警新方法[J].通信学报,2004,25(7):62-70. 被引量:40
  • 2杨峰,段海新,李星.网络蠕虫扩散中蠕虫和良性蠕虫交互过程建模与分析[J].中国科学(E辑),2004,34(8):841-856. 被引量:27
  • 3文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 4郑辉,李冠一,涂奉生.蠕虫的行为特征描述和工作原理分析[A].第三届中国信息和通信安全学术会议论文集[C].北京,2003.168-172. 被引量:1
  • 5GU G,SHARIF M,QIN X.Worm detection,early warning and response based on local victim information[A].20th Annual Computer Security Applications Conference(ACSAC2004)[C].Tucson,AZ 2004.136.145. 被引量:1
  • 6RICHANDSCM D W,GNIBBLE S D,LAZOWSKA E D.The limits of global scanning worm detectors in the presence of background noise[A].Proceedings of the 2005 ACM Workshop on Rapid Malcode[C].2005.60-70. 被引量:1
  • 7PORTOKALIDIS U,BOS H.Sweetbait:zero-hour worm detection and containment using low and high-interaction honeypots[J].Elsevier Computer Networks,2007,51(5):1256-1274. 被引量:1
  • 8KIJEWSKI E ARAKIS-an early warning and attack identification system[EB/OL].http://www.first.org/conference/2004/papers/c08.pdf.2004. 被引量:1
  • 9Symantec security response[EB/OL].http://www.symantec.com/enterprise/security_response/threatexplorer/azlisting.jsp.2006. 被引量:1
  • 10CNCERT/CC 2006年上半年网络安全报告[EB/OL].http:// www.cert.org.cn/articles/conference/common/2006080222843.shtml.2006. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部