期刊文献+

负风险模型及其推广模型基本性质和应用 被引量:2

Basic properties of negative risk model and its extended counterpart and their applications
下载PDF
导出
摘要 引入基本负风险模型,通过分析其最终破产概率所满足的泛函方程证明破产概率所满足的Lundberg不等式,该模型中采用指数效用原理所得到的单位时间的支出c与一般情形下所得到的c相同;研究同时含有正、负两类风险过程的风险模型,获得系列性质及其破产概率所满足的表达式. By introducing basic negative risk model, the Lundberg inequality satisfied by the ruin probability was verified by means of analyzing the functional equation satisfied by the ultimate ruin probability. Furthermore, the identity of the expenditure c per unit time obtained with exponential principle with that obtained in the general cases was concluded. A risk model which included both the positive and negative risk processes was studied and a series of properties and expressions for evaluation of ruin probability were obtained.
出处 《兰州理工大学学报》 CAS 北大核心 2010年第1期158-161,共4页 Journal of Lanzhou University of Technology
基金 甘肃省自然科学基金(0809RJZA019) 甘肃省高校研究生导师科研基金(0703-10)
关键词 负风险过程 指数效用原理 LUNDBERG不等式 破产概率 positive and negative risk process exponential effect principle Lundberg inequality ruin probability
  • 相关文献

参考文献10

二级参考文献36

共引文献53

同被引文献11

  • 1DE FINETTI B. Su un' impostazione altemativa della teoria eollettiva del rischio [ A ]. In : Proceedings of the Transactions of the XV International Congress of Actuaries [ C ]. 1957 (2) :433-443. 被引量:1
  • 2DAVID C M, DICKSON. Insurance Risk and Ruin [ M ]. Cambridge University Press,2005. 被引量:1
  • 3LIN X S, WILLMOT G E, DREKIC S. The classical risk model with a constant dividend barrier: Analysis of the Gerber-Shiu discounted penalty function [ J ]. Insurance : Mathematics and Economics,2003,33 (3) : 551-566. 被引量:1
  • 4GERBER H U,SHIU E S W. On the time value of ruin [J]. North American Actuarial Journal,1998,2(1) : 48-72. 被引量:1
  • 5AVANZI B, GERBER H U,SHIU E S W. Optimal dividend in the dual model [ J]. Insurance: Mathematics and Economics, 2007,41(1) : 111-123. 被引量:1
  • 6GERBER H U, SMITH N. Optimal dividends with incomplete information in the dual model [ J 1. Insurance: Mathematics and Economics, 2008,43 ( 2 ) : 227-233. 被引量:1
  • 7WANG G J, WU R. Some Distributions for Classical Risk Process that is Perturbed by Diffusion [ J]. Insurance: Mathematics and Economics ,2000,26 : 15-24. 被引量:1
  • 8王刈禾,胡亦钧.一类风险过程的Lundberg不等式[J].数学杂志,2009,29(2):224-226. 被引量:6
  • 9孔繁亮.B值渐近鞅的估值性质[J].应用数学,2004,17(S2):69-74. 被引量:4
  • 10刘征福,金燕生,赵娟.推广的带干扰风险模型[J].黑龙江大学自然科学学报,2010,27(5):635-638. 被引量:2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部