摘要
基于不可逆热力学理论和内变量理论,提出平均意义下的Clausius_Duhem不等式方程·与以往弹塑性空洞损伤研究不同,本文旨在利用自洽分析法建立起既考虑空洞形状影响又考虑空洞之间相互作用的场方程,并使之能够处理空洞体积比较大的弹塑性损伤问题·
Based on irreversible thermodynamics and internal state variable theory, the volume_averaged Clausius_Duhem inequality is presented. In contrast to former investigations on damage_elastoplasticity, our evalustions are founded on the volume_averaged field equations of the analyzed elements and the self_consistent method. Hence, our results not only include the influence of void shapes but also consider the interaction among voids. Further, previous work about coupled elastoplastic damage problems only takes into account small initial void volume fractions. Our work, however, will be able to deal with elastoplastic damage problems with larger initial void volume fractions.
出处
《应用数学和力学》
CSCD
北大核心
1998年第12期1119-1126,共8页
Applied Mathematics and Mechanics
基金
国家自然科学基金
江西省自然科学基金
关键词
弹塑性损伤
自洽分析
热力学定理
内变量理论
elastoplastic damage, self_consistent method, law of thermodynamics, inclusions