摘要
本文研究了三个方面的工作:一是定义了一种模糊集上的可测结构,从而定义了随机模糊集,这些定义部与论域X上的拓朴结构无关。将通常意*义下的集合看成特殊模糊集得到的通常集合上的超可测结构与文[3]中的定义*一致;二是给出了随机模糊集、随机集的一些等价条件;三是研究了随机模糊集、*随机集的分布与其有限维落影族的关系。
This article discusses three problems. First , it has defined the measurable structure on a fuzzy set on the basis of which the random fuzzy set is defined. These definitions have nothing to do with the topological structure of X fields of theory. The sets for normal sense are regarded as a super measurable structure of normal sets obtained from the special fuzzy sets , which is in accordance with the definition given in this article [3]. Second , it states some conditions of equal value of random fuzzy sets and random sets. Third , it studies the relationships between the distribution of random fuzzy sets and random sets and its finite falling shadow variety.
出处
《模糊系统与数学》
CSCD
1998年第1期66-70,共5页
Fuzzy Systems and Mathematics
基金
河北省自然科学基金资助
关键词
随机集
随机模糊集
随机过程
有限维落影族
Random sets
Random fuzzy sets
Random process
Finite falling shadow variety