期刊文献+

时变离散系统的渐进稳定性检验定理及算法 被引量:3

Theorem and Algorithm of Asymptotic Stability Test for Time Variant Discrete System
下载PDF
导出
摘要 提出了时变离散系统的渐近稳定性检验定理和算法.给出基于时变离散系统的传输矩阵的范数或谱半径检验定理的判椐,为时变离散系统的渐近稳定的充分和必要条件.讨论了时变离散系统与端点离散时不变系统两者间稳定性检验的区别,表明时变离散系统的稳定性不能由其时变系统矩阵集合的端点矩阵来确定. The theorem and algorithms of asymptotic stability test for time variant discrete systems are presented. Based on the norm or spectral radius of transfer matrices of the systems, the criteria of the test theorems presented here are necessary and sufficient conditions for asymptotic stability of time variant discrete systems. The difference of stability test between time variant discretesystems and extreme time invariant discrete systems has been discussed. A counterexample that the stability of a time variant discrete system can not be determined by the extreme matrices of its time variant system matrix set.
作者 肖扬 杜锡钰
出处 《北方交通大学学报》 CSCD 北大核心 1998年第6期1-7,共7页 Journal of Northern Jiaotong University
基金 国家自然科学基金
关键词 时变离散系数 渐近稳定性检验 算法 传输矩阵 time variant discrete system asymptotic stability test theorem\ algorithm
  • 相关文献

参考文献4

二级参考文献1

同被引文献20

  • 1Hai-bin Duan,Xiang-yin Zhang,Jiang Wu,Guan-jun MaSchool of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,P.R.China.Max-Min Adaptive Ant Colony Optimization Approach to Multi-UAVs Coordinated Trajectory Replanning in Dynamic and Uncertain Environments[J].Journal of Bionic Engineering,2009,6(2):161-173. 被引量:33
  • 2曾建潮,崔志华.微粒群算法的统一模型及分析[J].计算机研究与发展,2006,43(1):96-100. 被引量:25
  • 3Gelfand S B,IEEE Trans Signal Processing,1999年,47卷,3277页 被引量:1
  • 4Guo L,IEEE Trans Automatic Control,1997年,42卷,6期,761页 被引量:1
  • 5Karni S,IEEE Trans Circuits Systems,1989年,36卷,7期,1011页 被引量:1
  • 6Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of International Conference on Neural Networks. Perth, Australia: IEEE, 1995. 1942-1948 被引量:1
  • 7Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73 被引量:1
  • 8Ozcan E, Mohan C K. Particle swarm optimization: surfing the waves. In: Proceedings of Congress on Evolutionary Computation. Washington D. C., USA: IEEE, 1999. 1939-1944 被引量:1
  • 9Zheng Y L, Ma L H, Zhang L Y, Qian J X. On the convergence analysis and parameter selection in particle swarm optimization. In: Proceedings of the 2nd International Conference on Machine Learning and Cybernetics. Xi'an, China: IEEE. 2003. 1802-1807 被引量:1
  • 10Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers and Operations Research, 2006, 33(3): 859-871 被引量:1

引证文献3

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部