期刊文献+

微分演化算法在桁架形状优化中的应用 被引量:9

Truss Structure Shape Optimization with Differential Evolution Algorithm
下载PDF
导出
摘要 为了获得全局最优和解决具有应力约束、几何约束以及局部稳定性约束的桁架形状优化问题中2类不同设计变量耦合给优化带来的困难,将1种新型智能优化算法——微分演化(Differential Evolution,DE)应用于桁架结构的形状优化问题中。给出了考虑节点坐标和截面面积两类不同性质的设计变量的桁架结构优化的数学模型,并对几个经典的桁架结构进行优化,将所得结果与其他优化算法结果进行了比较。数值结果表明了DE算法具有良好的收敛性和稳定性,可以有效地进行桁架结构的形状优化设计。 Differential Evolution (DE) was introduced to get the global optimum and overcome the difficulties encountered by coupling two types of design variables in the shape optimization of truss structures with stress, geometry, and local stability constraints. The basic principle of DE algorithm was presented in detail first, and then mathematical model for shape optimization of truss structures was presented, in which two types of design variables, such as the node coordinates and section areas, were considered simultaneously. Several classical problems were solved with DE algorithm, and the results were compared with those using the other optimization methods. It was shown that DE algorithm had good convergence and stability and could be applied for shape optimization of truss structures effectively.
出处 《土木建筑与环境工程》 CSCD 北大核心 2010年第1期42-50,106,共10页 Journal of Civil,Architectural & Environment Engineering
基金 国家自然科学基金资助项目(50708076)
关键词 微分演化 全局最优 形状优化 桁架结构 数字模型 变量耦合 differential evolution global optimization shape optimization truss structures mathematical models coupling of design variables
  • 相关文献

参考文献17

  • 1ROZVANY GIN, BENDSOE MP, KIRSH U. Layout optimization pitfalls in topology optimization[J]. Appl. Mech. 1995, 48(2): 41-117. 被引量:1
  • 2隋允康,由衷.具有两类变量的空间桁架分层优化方法[J].计算结构力学及其应用,1990,7(4):82-92. 被引量:29
  • 3隋允康,高峰,龙连春,杜家政.基于层次分解方法的桁架结构形状优化[J].计算力学学报,2006,23(1):46-51. 被引量:18
  • 4汪定伟等编著..智能优化方法[M].北京:高等教育出版社,2007:309.
  • 5WANG D, ZHANG W H, JIANG J S. Truss shape optimization with multiple displacement constraints[J]. Computer methods in applied mechanics and engineering, 2002, 191:3597-3612. 被引量:1
  • 6TANG WEN-YAN, TONG LI-YONG, GU YUAN- XIAN. Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables [J]. Int. J Numer. Meth. Engng 2005,62:1737-1762. 被引量:1
  • 7刘齐茂,燕柳斌,邓朗妮.桁架形状优化的一种改进模拟退火算法研究[J].计算机工程与应用,2007,43(23):218-221. 被引量:8
  • 8CHEE KIONG SOH, YANG YAO-WEN. Genetic programming-based approach for structural optimization. Journal of Computing in Civil Engineering. 2000, 14(1): 31-37. 被引量:1
  • 9STORN R, PRICE K. Differential evolution A simple and efficient adaptive scheme for global optimization over continuous spaces [ J]. Journal of Global Optimization, 1997,11 (4) : 341-359. 被引量:1
  • 10VESTERSTROM J, THOMSEN R. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems [J]. Evolutionary Computation, 2004, 2:1980-1987. 被引量:1

二级参考文献19

共引文献65

同被引文献66

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部