期刊文献+

基于多目标进化算法的供水系统优化运行研究

Operational Optimization of WDS Based on Multiobjective Evolutionary Algorithms
原文传递
导出
摘要 将多目标进化算法与启发式算法相接合,对供水管网微观模型进行优化调度研究.目标函数为供水系统的运行费用和维护费用最小化,以及水压服务水平的最大化(保证安全供水),以各泵站各型号水泵的开启和调速泵的转数比为决策变量,进行二进制-实数混合编码,并采用新型的交叉算子.运用NSGA-Ⅱ、epsilon-MOEA、SPEA2三种多目标进化方法求解优化运行模型,并通过工程算例进行比较.应用表明,多目标进化算法能为供水系统的优化决策提供支持. Multiobjective evolutionary algorithms (MOEAs) combined with a developed heuristic algorithm are used to solve the optimal operation problem in micro water supply system. This work has two objectives to be minimized: operation cost, maintenance cost, and one objective to be maximized: service level of hydraulic. Decision variables are the settings of the pumps and speeds of variable-speed pumps at each time step of the total operational time horizon. A mixed coding methodology and a new crossover operator are developed according to the characteristics of decision variables. Three different MOEAS(NSGA-II, epsilon-MOEA, SPEA2) are implemented and compared. Practical application of this method shows that it can make efficient decision support for the dispatchers.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第2期67-75,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(50578077) 山东省中青年科学家奖励基金(05BS08004)
关键词 供水系统 微观模型 多目标进化算法 启发式算法 water supply system microscope model multi objective evolutionary algorithm heuristic algorithm
  • 相关文献

参考文献16

  • 1赵洪宾著..给水管网系统理论与分析[M].北京:中国建筑工业出版社,2003:419.
  • 2吕谋,张土乔,赵洪宾.大规模供水系统直接优化调度方法[J].水利学报,2001,32(7):84-90. 被引量:20
  • 3DEB K, PRATAP A, AGRAWAL S, et al. A fast and elitis multiobjective genetic algorithm: NSGA-II[R]. KanGAL Report, 200001. India, 2000. 被引量:1
  • 4ZITZLER E, DEB K, THIELE L. Comparison of multi-objective evolutionary algorithms: empirical results[J]. Evolutionary Gem-putation, 2000, 8(2): 173-195. 被引量:1
  • 5FONSECA CM. Multi-objective genetic algorithms with application to control engineering problems[D]. Department of Automatic Control and Systems Engineering. The University of Shefield, UK, 1995. 被引量:1
  • 6HORN J, NAFPLIOTIS N, GOLDBERG DE. A niched pareto genetic algorithm for multi- objective optimization[C]//In Proceedings of the First IEEE Conference on Evolutionary Computation, Piscaraway, NJ. IEEE, 1994: 82-87. 被引量:1
  • 7Ivalermir B Carrijo, Luisa Fernanda Reis R, Godfrey A Walters, et al. Operational optimization of WDS based on multiobjective genetic algorithm and operational extraction rules using data mining[C]//World Water and Environmental Resources Congress, 2004. 被引量:1
  • 8Deb K; A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solu- tions[R]. KanGAL report number 2003002. 被引量:1
  • 9Deb K, Agrawal S, Pratap A, Meyarivan T. A Fast Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimizaiton: NSGA-II[M]. Parallel Prol~lem Solving from Nature VI, 2000: 849-858. 被引量:1
  • 10Eckart Zitzler, Marco L, and Lothar Thiele. SPEA2: Improving the strength pareto evolutionary algorithm[R]. TIK-Report 103, 2001, 5. 被引量:1

二级参考文献6

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部