摘要
采用循环伏安一步共聚法在碳纳米管修饰的铂基体上制备了电活性碳纳米管/聚苯胺/铁氰化镍(CNTs/PANI/NiHCF)复合膜.用傅立叶变换红外(FT-IR)光谱、X射线能谱仪(EDS)和扫描电镜(SEM)研究了复合膜组成及其表面形貌,并用循环伏安(CV)、恒电流充放电和电化学阻抗(EIS)等测试了复合膜的循环稳定性与电化学容量性能.研究表明:CNTs/PANI/NiHCF复合膜为三维多孔有序的网络状结构,PANI和NiHCF以纳米颗粒形式存在并沿CNTs均匀分布;在电流密度为2mA.cm-2时,CNTs/PANI/NiHCF复合膜的比容量高达262.28F.g-1,比能量为29.51Wh.kg-1,电流密度为10mA.cm-2时比功率可达10228.61W.kg-1;在2000次循环充放电过程中,复合膜的电容量仅衰减19.92%,电荷充放电效率一直保持在99%以上.CNTs/PANI/NiHCF有机-无机杂化膜具有良好的功率特性和快速充放电能力,是一种优异的超级电容器材料.
Electroactive composite films of carbon nanotubes/polyaniline/nickel hexacyanoferrate (CNTs/PANI/ NiHCF) were synthesized on platinum substrates modified with CNTs by a one-step co-polymerization using cyclic voltammetry. The composite films were characterized by Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Cyclic voltammetry (CV), galvanostatic charge/ discharge, and electrochemical impedance spectroscope (EIS) methods were used to study the cycling stability and the electrochemical capacitive performance of the CNTs/PANI/NiHCF films. Results showed that three-dimensional porous network composite films with uniform distributions of PANI and NiHCF nanoparticles on the CNTs were formed by this new method. The specific capacitance of the inorganic-organic hybrid films were 262.28 F· g^-1 with a specific energy of 29.51 Wb-kg^-1 at a current density of 2 mA·cm^-2. The specific power was 10228.61 W·kg^-1 at a current density of 10 mA·cm^-2. Meanwhile, CNTs/PANI/NiHCF films showed a capacity decay of only 19.92% after 2000 charge/discharge cycles and had a coulombic efficiency of over 99%. Therefore, the composite films exhibit outstanding power performance, fast dynamics of charge transport and are excellent materials for use in supercapacitors.
出处
《物理化学学报》
SCIE
CAS
CSCD
北大核心
2010年第2期291-298,共8页
Acta Physico-Chimica Sinica
基金
国家自然科学基金(20676089)
山西省自然科学基金(2007011029)
山西省回国留学基金(2008-32)资助项目~~
关键词
超级电容器
聚苯胺
铁氰化镍
碳纳米管
复合膜
电化学共聚
电容性能
Supercapacitor
Polyaniline
Nickel hexacyanoferrate
Carbon nanotube
Composite film
Electrochemical co-polymerization
Capacitive performance