期刊文献+

一种应用于Deep Web数据集成系统中的查询松弛策略 被引量:5

A Query Relaxation Strategy Applied in a Deep Web Data Integration System
下载PDF
导出
摘要 针对Deep Web环境中存在的失败查询,提出了一种有效的查询松弛策略.所有Deep Web资源按查询接口属性分组,组成全局数据源关系图(DRG);针对特定查询将DRG转换为对应该查询请求的数据源关系图;利用该DRG,按照特定的规则进行查询松弛和执行处理.针对查询松弛导致的部分结果可能与用户查询请求的相似度较低的问题,提出先通过Skyline方法对结果进行筛选,然后再根据各个结果实例与用户查询的相似度进行Top-k排序,最后将最接近用户要求的结果集返回给用户.通过实验验证了提出的查询松弛策略的有效性. In the process of query in Deep Web data integration system,it is hard to avoid the so-called failed query that brings unsatisfactory result. So it is more cooperative to modify the raw query to return non-empty result set than to notify the user that there is no result corresponding to the query at all. Inspired by the observations and analysis on deep Web,a query relaxation solution applied in a deep Web data integration system is proposed in this paper,in which,all the Deep Web sources are grouped based on their query interface attributes and constructed as a global database relationship graph (DRG),the global database relationship graph (DRG) is transformed to database relationship graph fitting a specified query,and then the query is relaxed and executed based on the DRG. However,because of query relaxation the amount of the results from the data sources may be very large,and part of them may be not similar to the user's query. Therefore after receiving the results from the data sources,a part of the results is first selected by using the skyline method,and then is sorted based on the similarity between the results and the user's query,Finally the results satisfying the user's requirement are returned to the user. Experiments demonstrate the availability of the query relaxation strategy.
出处 《计算机研究与发展》 EI CSCD 北大核心 2010年第1期88-95,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60673139 60973021) 国家"八六三"高技术研究发展计划基金项目(2008AA01Z146)
关键词 DEEP WEB 查询松弛 数据源关系图 TOP-K SKYLINE Deep Web query relaxation database relationship graph Top-k skyline
  • 相关文献

参考文献15

  • 1Barbosa L, Freire J. Combining classifiers to identify online databases [C]//Proc of WWW'07. New York: ACM, 2007: 431-440. 被引量:1
  • 2He B, Zhang Z, Chang K C -C. MetaQuerier: Querying structured Web sources on-the-fly [C] //Proc of ACM SIGMOD'05. New York: ACM, 2005:927-929. 被引量:1
  • 3马安香,张斌,高克宁,齐鹏,张引.基于结果模式的Deep Web数据抽取[J].计算机研究与发展,2009,46(2):280-288. 被引量:15
  • 4C-DBLP [EB/OL]. [2008-10-05]. http://www. cdblp. cn/. 被引量:1
  • 5Kaplan S. Cooperative aspects of database interactions [J]. Artificial Intelligence, 1982, 19(2): 165-87. 被引量:1
  • 6Gaasterland T. Cooperative answering through controlled query relaxation [J]. IEEE Expert: Intelligent Systems and Their Applications, 1997, 12(5): 48-59. 被引量:1
  • 7Koudas N, Li C, TungA, et al. Relaxing Join and selection queries [C]//Proc of VLDB. New York: ACM, 2006: 199- 210. 被引量:1
  • 8Motro A. FLEX; A tolerant and cooperative user interface to databases [J]. IEEE Trans on Knowledge and Data Engineering (TKDE), 1990, 2(2): 231-246. 被引量:1
  • 9Chu W, Y H, Chiang K, et al. CoBase: A scalable and extensible cooperative information system [J]. Intelligent Information Systems (JIIS), 1996, 6(2/3): 223-259. 被引量:1
  • 10Nambiar U, Kambhampati S. Answering imprecise queries over autonomous Web databases [C] //Proc of VLDB. New York: ACM, 2006:1350-1353. 被引量:1

二级参考文献9

  • 1Pinto D, McCallum A, Wei X. Table extraction using conditional random fields [C] //Proc of the 26th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2003:235-242 被引量:1
  • 2Wang Y, Hu J. A machine learning based approach for table detection on the Web [C]//Proc of the 11th Int Conf on World Wide Web. New York: ACM, 2002:242-250 被引量:1
  • 3Wang Jiying, Lochovsky F. Data extraction and label assignment for Web databases [C]//Proc of the 12th Int Conf on World Wide Web. New York: ACM, 2003:187-196 被引量:1
  • 4Zhai Y, Liu B. Web data extraction based on partial tree alignment [C] //Proc of the 14th Int Conf on World Wide Web. New York: ACM, 2005:76-85 被引量:1
  • 5Liu B, Grossman R L, Zhai Yanhong. Mining data records in Web pages [C] //Proc of the 9th Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2003: 601- 606 被引量:1
  • 6Liu W, Meng X, Meng W. Vision based Web data records extraction [C]//Proc of the 9th Int Workshop in Web and Databases. New York: ACM, 2006:20-25 被引量:1
  • 7Arvind Arasu, Hector Garcia Molina. Extracting structured data from Web pages [C] //Proc of the Int Conf on Management of Data. New York: ACM, 2003:337-348 被引量:1
  • 8Hsu J L, Liu C C, Chen Arbee L P. Efficient repeating pattern finding in music databases [C] //Proc of the 7th Int Conf on Information and Knowledge Management. New York: ACM, 1998:281-288 被引量:1
  • 9刘伟,孟小峰,孟卫一.Deep Web数据集成研究综述[J].计算机学报,2007,30(9):1475-1489. 被引量:136

共引文献14

同被引文献25

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部