期刊文献+

一种改进的椭圆曲线安全代理签名方案 被引量:6

Improved secure proxy signature scheme based on elliptic curve
下载PDF
导出
摘要 为解决基于椭圆曲线的代理签名方案的安全问题,提出一种改进的抗伪造攻击的代理签名方案。该方案通过改进代理签名私钥生成方式和相应的代理签名验证等式的方法,提高了基于椭圆曲线的代理签名方案的安全性。分析表明,新方案解决了以往方案中存在的原始签名者伪造问题,满足强代理签名方案所必须的六种性质,具有无须安全通道的优点并且更为高效。分析结果说明,新方案比以往方案具有更好的安全性和更高的实用性。 To overcome the secure weakness of the existing proxy signature scheme based on elliptic curve, this paper presen- ted an improved proxy signature scheme that could avoid forgery attack. Enhanced the security of the proxy signature scheme based on elliptic curve by improving on the generate form of the private key and the corresponding verification equation of proxy signature. The analysis showed that the new scheme resolved secure problems in the former schemes, met the six aspects of security features needed by strong proxy signature scheme, did not need the support of the secure channel, and was more efficient. The analytic results prove that the new scheme is more secure and practicable.
出处 《计算机应用研究》 CSCD 北大核心 2010年第2期685-688,共4页 Application Research of Computers
基金 国家"973"计划资助项目(2007CB310704) 国家自然科学基金资助项目(90718001 60821001 U0835001)
关键词 代理签名 椭圆曲线 椭圆曲线离散对数问题 proxy signature elliptic curve elliptic curve discrete logarithm problem (ECDLP)
  • 相关文献

参考文献15

  • 1MAMBO M, USUDA K, OKAMOTO E. Proxy signature: delegation of the power to sign messages[ J]. IEICE Trans on Fundamentals of Electronics Communications and Computer Sciences, 1996, E79A(9) : 1338-1354. 被引量:1
  • 2祁明,L.Harn.基于离散对数的若干新型代理签名方案[J].电子学报,2000,28(11):114-115. 被引量:67
  • 3SHAO Zu-hua. Proxy signature schemes based on factoring[ J]. Information Processing Letters, 2003,85 (3) : 137-143. 被引量:1
  • 4LEE B, KIM H, KIM K. Strong proxy signature and its applications [ C]//Proc of Symposium on Cryptography and Information Security. Oiso, Japan :[ s. n. ], 2001:603-608. 被引量:1
  • 5杨伟强,徐秋亮.典型代理签名方案的分析与改进[J].计算机工程与应用,2004,40(9):152-154. 被引量:11
  • 6KOBLITZ N. Elliptic curve cryptosystems [ J ]. Mathematics of Computation, 1987,48 ( 1 ) : 203- 209. 被引量:1
  • 7MILLER V S. Use of elliptic curve in cryptography[ C]//Proc of Advances in Cryptology-Crypto' 85. New York : Springer-Verlag, 1986 : 417-426. 被引量:1
  • 8CAELLI W J, DAWSON E P, REA S A. PKI, elliptic curve cryptography, and digital signatures [ J ]. Computers and Security, 1999, 18(1) : 47-66. 被引量:1
  • 9CHEN T S, LIU T P, HWANG G S, et al. An improvement of proxyprotected proxy multi-signature scheme [ C ]//Proc of the 13th International Conference on Information Management. 2002:33-40. 被引量:1
  • 10CHEN T S, CHUNG Y F, HWANG G S. Efficient proxy muhi-signature schemes based on the elliptic curve cryptasystem [ J ]. Computers & Security,2003,22(6) :527-534. 被引量:1

二级参考文献39

  • 1吴旭辉,沈庆浩.一种代理多签名体制的安全性分析[J].通信学报,2005,26(7):119-122. 被引量:6
  • 2祁明,肖国镇.加强广义El Gamal型签名方案的安全性[J].电子学报,1996,24(11):68-72. 被引量:10
  • 3曹天杰,林东岱,薛锐.基于椭圆曲线的代理多签名方案的安全性分析[J].小型微型计算机系统,2006,27(5):798-801. 被引量:7
  • 4[1]B Lee,H Kim,K Kim. Strong Proxy Signature and its Applications[C].In:Proc of SCIS 2001,2001:603~608 被引量:1
  • 5[2]B Lee,H Kim, K Kim.Secure Mobile Agent using Strong Non-designated Proxy Signature[C].In:Proc ACIS,2001:474~486 被引量:1
  • 6[3]V Varadharajan,P Allen,S Black. An analysis of the proxy problem in distributed systems[C].In:Proc IEEE Computer Society Symp on Research in Security and Privacy,1991:255~275 被引量:1
  • 7[4]B C Neuman.Proxy-based authorization and accounting for distributed systems[C].In :Proc 13th International Conference on Distributed Computing Systems, 1993:283~291 被引量:1
  • 8[5]M Mambo,K Usuda,E Okamoto. Proxy Signature:Delegation of the Power to Sign Messages[J].IEICE Trans Fundamentals,1996;E79-A:1338~1353 被引量:1
  • 9[6]S Kim,S Park,D Won. Proxy Signature,revisited[C].In:Proc of ICICS′97 International Conference on Information and Communication Security, 1997: 223~232 被引量:1
  • 10[7]D Pointcheval,J Stern.Security proofs for signatures[C].In:Advances in Cryptology: Eurocrypt96, Berlin: springer, 1996: 387~398 被引量:1

共引文献96

同被引文献32

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部