期刊文献+

基于改进SEM算法的基因调控网络构建方法 被引量:3

Method for modeling gene regulation network based on improved structure expectation maximization algorithm
下载PDF
导出
摘要 动态贝叶斯网络(DBN)是基因调控网络的一种有力建模工具。贝叶斯结构期望最大算法(SEM)能较好地处理构建基因调控网络中数据缺失的情况,但SEM算法学习的结果对初始参数设置依赖性强。针对此问题,提出一种改进的SEM算法,通过随机生成一些候选初始值,在经过一次迭代后得到的参数中选择一个最好的初始值作为模型的初始参数值,然后执行基本的SEM算法。利用啤酒酵母细胞周期微阵列表达数据,构建其基因调控网络并与现有文献比较,结果显示该算法进一步提高了调控网络构建的精度。 Dynamic Bayesian network (DBN) is a powerful moedling tool for gene rugulation network. Missing data in building gene regulation network is better dealt with SEM (Bayesion structure expectation maximization) algorithm, however, the result of learning by SEM algorithm has strong dependence on the initial parameters. This paper proposed an improver SEM algorithm, which randomly generated a number of candidate initial parameters and selected the best parameter as whole model' s initial parameter to execute basic SEM algorithm after a iterative process. Comparing gene regulation network constructed with yeast cycle gene expression data by improved SEM algorithm with existing literature, the result indicates further improve the accuracy of constructing regulation network.
出处 《计算机应用研究》 CSCD 北大核心 2010年第2期450-452,458,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60705015) 安徽省自然科学基金资助项目(070412064) 合肥工业大学科学研究发展基金资助项目(070504F)
关键词 基因调控网络 动态贝叶斯网络 贝叶斯结构期望最大化算法 gene rugulation network dynamic Bayesian network (DBN) Bayesian structure expectation maximization algorithm
  • 相关文献

参考文献13

  • 1AKUTSU T, KUHARA S, MIYANO S. Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function [ J ]. Journal of Computational Biology,2000,7( 3-4 ) :331 - 343. 被引量:1
  • 2WAHDE M, HERTZ J. Coarse-grained reverse engineering of genetic regulatory networks [ J ]. Biosystems, 2000,55 ( 1-3 ) : 129- 136. 被引量:1
  • 3FRIEDMAN N, LINIAL M, NACHMAN I, et al. Using Bayesian network to analyze expression data[ J]. Journal of Computational Biology, 2000,7(3-4):601-620. 被引量:1
  • 4LEARY P, FRANCOIS O. BNT structure iearning package : documentation and experiments[ R]. 2004. 被引量:1
  • 5FRIEDMAN N, MURPHY K, RUSSELL S. Learning the structure of dynamic probabilistic networks[ C ]//Proc of the 14th Conference on Uncertainty in Artificial Intelligence. 1998:139- 147. 被引量:1
  • 6SPELLMAN P T, SHERLOCK G, ZHANG M Q, et al. Comprehensive identification of cell cycle-regulated genes of the yesat saccaromyces cerevisiae by microarray hybridization[J]. Mol Biol Cell, 1998, 9(12) :3273- 3297. 被引量:1
  • 7Home page of KEGG[ EB/OL]. http ://www. genome, ad. jp/kegg. 被引量:1
  • 8KIM S, IMOTO S, MIYANO S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data [ J ]. Biosystems, 2004,75 ( 1-3 ) : 57- 65. 被引量:1
  • 9FRIEDMAN N. The Bayesian structural EM algorithm[ C]//Proc of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA : Morgan Kanfmann, 1998:571 - 578. 被引量:1
  • 10ZHANG Yu, DENG Zhi-dong, JIANG Hong-shan, et al. Dynamic Bayesian network (DBN) with structure expectation maximization (SEM) for modeling of gene network from time series gene expression data[ C]//Proc of International Conference on Bioinformatics & Computational Biology. Las Vegas, Nevada: [ s. n. ]. 2006:26- 29. 被引量:1

二级参考文献27

  • 1王毓平,刘文演,王西明.E2F-1诱导细胞凋亡研究进展[J].基础医学与临床,2006,26(4):437-440. 被引量:5
  • 2Akutsu T,Miyano S.Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function[J].J Comput Biol,2000(7):331-343. 被引量:1
  • 3Wahde M,Hertz J.Coarse-grained reverse engineering of genetic regulatory netwotks[J].Biosyatems,2000(55):129-136. 被引量:1
  • 4Friedman N,Linial M,Nachman I,et al.Using Bayesian networks to analyze expression data[J].J Comput Biol,2000(7):601-620. 被引量:1
  • 5Murphy K,Mian S.Modelling gene expression daga using dynamic bayesian networks[J].Technical Report MIT Artificial Intelligence Laboratory,1999. 被引量:1
  • 6Sun Yong Kim,Imoto S,Miyano S.Ingerring gene networks from time series microarray data using dynamic Bayesian networks[J].Biiefings inBioinfomatics,2003 9,4(3):228-235. 被引量:1
  • 7Perrin B,Ralaivola L,A A.Gene networks inference using dynamic Bayesian Networks[J].Bioinformatics,2003,1 (1):1-10. 被引量:1
  • 8Heckerman D,Geiger D,Chickering DM.learning Bayesian networks:the combination of knowledge and statistical data[J].Machine Learning,1995,20:197-243. 被引量:1
  • 9chou CK,liu CN.Approximating discrete prohablity distrubutions with dependence trees[J].IEEE Transactions on Information Theory,1968,14(3):462-467. 被引量:1
  • 10Whitfield M L,Sherlock G,Saldanha A J,et al.Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors[J].Molecular Biology of the Cell,2002,13(6):1977-2000. 被引量:1

共引文献9

同被引文献26

  • 1Hanks R J,Ritehie J T. Modeling plant and soil systems[M]. Agronomy Monograph, 1991: 545. 被引量:1
  • 2Welch S M,Roe J L,Dong Z. A genetic neural network model of flowering time control in Arabidopsis thaliana[J]. Agronomy Journal, 2003,95 ( 1 ):71-81. 被引量:1
  • 3Welch S M,Roe J L,Das S, et al. Merging genomic control net- works and Soil-Plant-Atmosphere-Contium (SPAC) models[J]. Agricultural Systems, 2003,86(3) : 243-274. 被引量:1
  • 4Cooper M, Chapman S C, Podlich D W, et al. The GP problem: quantifying gene-to-phenotype relationships[J]. Silieo Biology, 2002,2(2) : 151-164. 被引量:1
  • 5Bernardo D, Gardner T S, Collias J J, et al. Robust Identification of Large Genetic Networks[J]. Pacific Symposium on Bioeom- puting, 2004,9 : 486-497. 被引量:1
  • 6Lahdesmaki H, Shmulevich I, Yli-Harja O. On Learning Gene Regulatory Networks under the Boolean Network Model[J].Machine Learning, 2003,52(1/2) : 147-167. 被引量:1
  • 7Chen X W,Gopalakrishna A,Wang X K. An effective structure learning method for constructing gene networks[J].Bioinforma- tics, 2006,22(11) :1367-1374. 被引量:1
  • 8Mitra S, Das R, Hayashi Y. Genetic networks and soft eompu- ting[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011,8 (1) : 94-107. 被引量:1
  • 9Baldi P, Hatfield G. DNA microarrays and gene expression[M]. Cambridge UK: Cambridge University Press, 2002. 被引量:1
  • 10Welch S M, Dong Z, Roe J L, et al. Flowering time control: gene network modeling and the link to quantitative genetics[J]. Aus- tralian Journal of Agricultural Research, 2005,56 (9) : 919-936. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部