期刊文献+

Discrete breathers in a model with Morse potentials

Discrete breathers in a model with Morse potentials
下载PDF
导出
摘要 Under harmonic approximation, this paper discusses the linear dispersion relation of the one-dimensional chain. The existence and evolution of discrete breathers in a general one-dimensional chain are analysed for two particular examples of soft (Morse) and hard (quartic) on-site potentials. The existence of discrete breathers in one-dimensional and two-dimensional Morse lattices is proved by using rotating wave approximation, local anharmonic approximation and a numerical method. The localization and amplitude of discrete breathers in the two-dimensional Morse lattice with on-site harmonic potentials correlate closely to the Morse parameter a and the on-site parameter к. Under harmonic approximation, this paper discusses the linear dispersion relation of the one-dimensional chain. The existence and evolution of discrete breathers in a general one-dimensional chain are analysed for two particular examples of soft (Morse) and hard (quartic) on-site potentials. The existence of discrete breathers in one-dimensional and two-dimensional Morse lattices is proved by using rotating wave approximation, local anharmonic approximation and a numerical method. The localization and amplitude of discrete breathers in the two-dimensional Morse lattice with on-site harmonic potentials correlate closely to the Morse parameter a and the on-site parameter к.
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第2期381-387,共7页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 1057411) the Foundation for Researching Group by Beijing Normal University
关键词 discrete breathers Morse lattice square lattice on-site potential discrete breathers Morse lattice square lattice on-site potential
  • 相关文献

参考文献20

  • 1Sievers A J and Takeno S 1988 Phys. Rev. Lett. 61 970. 被引量:1
  • 2Page J B 1991 Phys. Rev. B 41 7835. 被引量:1
  • 3Mackay R S and Aubry S 1994 Nonlinearity 7 1623. 被引量:1
  • 4Aubry S 1997 Physica D 103 201. 被引量:1
  • 5Flach S and Willis C R 1998 Phys. Rep, 295 181. 被引量:1
  • 6Zhou Q, Lu B B and Tian Q 2009 Acta Phys. Sin. 58 411 (in Chinese). 被引量:1
  • 7Eisenberg H S, Silberberg Y, Morandotti R, Boyd A R and Aitchison J S 1998 Phys. Rev. Lett. 81 3383. 被引量:1
  • 8Fleischer J W, Segev M, Efredmidis N K and Christodoulides D N 2003 Nature 422 147. 被引量:1
  • 9Trias E, Mazo J J and Orlando T P 2000 Phys. Rev. Lett. 84 741. 被引量:1
  • 10Binder P, Abraimov D, Ustinov A V, Flach S and Zolotaryuk Y 2000 Phys. Rev. Lett. 84 745. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部