期刊文献+

面向观众的个性化电影情感内容表示与识别 被引量:3

Audience Oriented Personalized Movie Affective Content Representation and Recognition
下载PDF
导出
摘要 为了合理地表示和自动识别电影情感内容,解决电影情感语义理解中存在的"情感鸿沟"难题,提出一种面向观众的个性化电影情感空间建模方法.采用模糊c-均值聚类算法划分诱力-激励情感空间,并利用高斯混合模型定义划分得到的模糊情感子空间的情感隶属度函数,使得模糊情感子空间的中心、边界、形状和密度可以真实地反映观众欣赏视频节目时的个性化信息;设计并提取了2组电影情感特征向量,采用多层感知机和多元线性回归计算它们的情感坐标.基于情感坐标和情感隶属度函数引入"最大隶属原则"和"阈值原则",以便表示和识别观众观影过程中的个性化情感体验.实验结果表明,该方法能够有效地表示和识别个性化电影情感内容. In order to represent and recognize the movie affective content reasonably and automatically,an audience oriented personalized movie emotion space modeling method is proposed as a solution for the "affective gap".It is an essential problem on the movie affective semantic understanding.By our method,a fuzzy c-mean clustering(FCM) algorithm is adopted to divide the Valence-Arousal emotion space into the typical fuzzy emotion subspaces and Gaussian mixture model(GMM) is used to determine their affective membership functions.The centers,borders,shapes and densities of these subspaces can truthfully reflect the emotional tendencies of audiences.Two sets of movie affective feature vectors are formulated.Multi-layer perception(MLP) and multiple linear regression are adopted to compute the emotion coordinates of these movie affective feature vectors.Based on the affective membership functions and emotion coordinates,the maximum membership principle and the threshold principle are introduced to represent and recognize the emotional preferences of the audiences.Experimental results demonstrate that the proposed modeling method can be applied to effectively represent and recognize the personalized movie affective content.
作者 孙凯 于俊清
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第1期136-144,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60703049) 湖北省自然科学基金(2007ABA265) 武汉市青年科技晨光计划(200850731353)
关键词 情感内容 情感空间 特征向量 情感坐标 affective content emotion space feature vector emotion coordinate
  • 相关文献

参考文献18

  • 1Kang H B. Affective content detection using HMMs [C]// Proceedings of the 11th ACM International Conference on Multimedia, Berkeley, 2003:259-262. 被引量:1
  • 2Xu M, Chia L T, Jin J. Affective content analysis in comedy and horror videos by audio emotional event detection [C]// Proceedings of International Conference on Multimedia and Expo, Amsterdam, 2005:622-625. 被引量:1
  • 3Moncrieff S, Dorai C, Venkatesh S. Affect computing in film through sound energy dynamics [C] //Proceedings of the 9th ACM International Conference on Multimedia, Ottawa, 2001 : 525-527. 被引量:1
  • 4Hanjalie A, Xu L Q. Affective video content representation and modeling [J]. IEEE Transactions on Multimedia, 2005, 7 (1) : 143-154. 被引量:1
  • 5刘大有,卢奕南,王飞,梁艳春.遗传程序设计方法综述[J].计算机研究与发展,2001,38(2):213-222. 被引量:52
  • 6谢金晶,陈益强,刘军发.基于语音情感识别的多表情人脸动画方法[J].计算机辅助设计与图形学学报,2008,20(4):520-525. 被引量:6
  • 7张立华,杨莹春.情感语音变化规律的特征分析[J].清华大学学报(自然科学版),2008,48(S1):652-657. 被引量:14
  • 8Lang P J, Bradley M M, Cuthbert B N. International affeetive picture system (IAPS): instruction manual and affeetive ratings [R]. Gainesville: University of Florida: The Center for Research in Psychophysiology, 2005. 被引量:1
  • 9Cannon R L, Dave J V, Bezdek J C. Efficient implementation of the fuzzy c-means clustering algorithms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(2), 248-255. 被引量:1
  • 10Ngo C W, Pong T C, Zhang H J. Motion analysis and segmentation through spatio-temporal slices processing[J]. IEEE Transactions on Image Processing, 2003, 12(3): 341- 355. 被引量:1

二级参考文献20

共引文献69

同被引文献45

  • 1XU M, CHIA L, JIN J. Affective content analysis in comedy and horror videos by audio emotional event de- tection[C] /// Proceedings of International Conference on Multimedia and Expo. Amsterdam: [s. n.], 2005: 622 - 625. 被引量:1
  • 2HANJALIC A, XU L. Affective video content repre- sentation and modeling [J]. IEEE Transactions on Mul- timedia, 2005, 7(1) : 143 - 154. 被引量:1
  • 3SOLEYMANI M, CHANEL G, KIERKELS J J M, et al. Affective characterization of movie scenes based on multimedia content analysis and user's physiological emotional responses[J]. IEEE International Symposium on Multimedia, 2008: 228- 235. 被引量:1
  • 4MONEY A G, AGIUS H. Analysing user physiological responses for affective video summarisation [J]. Dis- plays, 2009, 30(2): 59-70. 被引量:1
  • 5EKMAN P. Emotion in the Human Face[M]. Cam- bridge: Cambridge University Press, 1982. 被引量:1
  • 6KIM J, ANDRE E. Emotion recognition based on phys- iological changes in music listening[J].IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2008, 30(12) : 2067 - 2083. 被引量:1
  • 7Thought Technology Ltd. Biofeedback Equipment[EB/OL]. [2011-01 20]. http://www, thoughtteehnology, com. 被引量:1
  • 8CHEN L, CHEN G, XU C, et al. EmoPlayer: a media player for video clips with affective annotations [J]. Interacting with Computers, 2008, 20 (1): 17 -28. 被引量:1
  • 9VERVERIDIS D, KOTROPOULOS C. Fast and accu- rate sequential floating forward feature selection with the Bayes classifier applied to speech emotion recognition[J]. Signal Processing, 2008, 88(12) : 2956 - 2970. 被引量:1
  • 10VAPNIK V N. The nature of statistical learning theory [M]. New York: Springer Verlag, 1995. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部