期刊文献+

基于分割稳健而快速的局部立体匹配及医学应用 被引量:4

Segmentation-Based,Robust and Fast Local Stereo Matching with Medical Application
下载PDF
导出
摘要 为了快速消除双目立体匹配的歧义性,提出一种基于局部信息和分割、快速高效的两步立体匹配算法.首先分割彩色立体图像对,并基于改进的Geman-McClure函数得到初始匹配成本;在水平、垂直双方向上采用分割自适应权重方法,消除匹配特征的相似歧义,计算鲁棒匹配代价,择优选取初始视差.为了最优地分配遮挡等歧义区域,采用贪婪策略估计视差,包括不可靠视差检测、基于分割窄遮挡处理、基于极线最小二乘填充及基于映射的视差组合.实验结果表明,该算法结构简单、计算快速高效,能有效地消除匹配歧义,得到分段平滑、精度高的稠密视差图;可在临床医学疾病诊断应用中自动地为计算机辅助诊断系统提供可靠深度信息感知. A segmentation-based two-step stereo matching is proposed in a fast and local perspective to resolve the ambiguity of binocular stereo problem in this paper.Color segmentation is firstly conducted on both stereo pairs,then robust matching costs are constructed with modified Geman-McClure function and segmentation-based variable support two-pass aggregation only in the horizontal and vertical directions which eliminate ambiguity in feature matching,and then initial disparity map is obtained from them.To assign optimal disparity to ambiguous regions(such as occlusion etc.),greedy disparity estimation consists sequentially of four parts: unreliable disparity detection,segmentation-based narrow occlusion handling,epipolar-line-based least square filling and warping-based disparity combination.The experimental results indicate that this technique can eliminate matching ambiguity and obtain piecewise smooth,accurate and dense disparity map effectively.This algorithm is concise,fast and efficient so that it could provide automatic and reliable depth perception for computer aided diagnosis system in clinical medical application diagnosing diseases.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第1期100-107,共8页 Journal of Computer-Aided Design & Computer Graphics
关键词 机器视觉 双目立体匹配 基于分割的可变权值 最小二乘拟合 临床医学诊断 Machine vision binocular stereo matching segmentation-based variable support weight least square fitting clinical medical diagnosis
  • 相关文献

参考文献23

  • 1Scharstein D, Szeliski R. A taxonomy and evaluation of dense two -frame stereo correspondence algorithms [J]. International Journal of Computer Vision, 2002, 47 (1/2/3) : 7-42. 被引量:1
  • 2Birchfield S, Tomasi C. A pixel dissimilarity measure that is insensitive to image sampling [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(4): 401-406. 被引量:1
  • 3Gerrits M, segmentation 3rd Canadian Quebec City, Bekaert P. Local stereo matching with based outlier rejection [C] //Proceedings of the Conference on Computer and Robot Vision, 2006:66-66. 被引量:1
  • 4Tombari F, Mattoccia S, Stefano L D. Segmentation-based adaptive support for accurate stereo correspondence [C] //Proceedings of the 2nd Pacific Rim Symposium on Image and Video Technology, Santiago, 2007: 427-438. 被引量:1
  • 5Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 650-656. 被引量:1
  • 6Gu Z, Su X Y, Liu Y K, et al. Local stereo matching with adaptive support weight, rank transform and disparity calibration [J]. Pattern Recognition Letters, 2008, 29 (9) 1230-1235. 被引量:1
  • 7Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self adapting dissimilarity measure [C] //Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, 2006: 15-18. 被引量:1
  • 8Kolmogorov V, Zabih R. Computing visual correspondence with occlusions using graph cuts[C] //Proceedings of the 8th International Conference on Computer Vision, Vancouver, 2001:508-515. 被引量:1
  • 9Veksler O. Stereo correspondence by dynamic programming on a tree [C] //Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, 2005 :384-390. 被引量:1
  • 10刘正东,杨静宇.自适应窗口的时间规整立体匹配算法[J].计算机辅助设计与图形学学报,2005,17(2):291-294. 被引量:12

二级参考文献20

  • 1刘正东,杨静宇.自适应窗口的时间规整立体匹配算法[J].计算机辅助设计与图形学学报,2005,17(2):291-294. 被引量:12
  • 2夏永泉,刘正东,杨静宇.不变矩方法在区域匹配中的应用[J].计算机辅助设计与图形学学报,2005,17(10):2152-2156. 被引量:21
  • 3Zitnick C, Kanade T. A cooperative algorithm for stereo matching and occlusion detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(7): 675~684 被引量:1
  • 4Baker H, Binford T. Depth from edge and intensity based stereo[A]. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, Vancouver, 1981. 631~636 被引量:1
  • 5Chung Kuoliang. A fast algorithm for stereo matching [J].Information Processing, 1997, 63(2): 57~61 被引量:1
  • 6Ohta Y, Kanade T. Stereo by intra- and inter-scanline search using dynamic programming [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, 7(2): 139~154 被引量:1
  • 7Maitre H, Luo W. Using models to improve stereo reconstruction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 149(2): 269~277 被引量:1
  • 8Medioni G, Nevatia R. Segment-based stereo matching [J].Computer Vision, Graphics, and Image Processing, 1985, 31(1): 2~18 被引量:1
  • 9Grimson W. Computational experiments with a feature based stereo algorithm [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, 7(1): 17~34 被引量:1
  • 10Kanade T, Okutomi M. A stereo matching algorithm with an adaptive window: Theory and experiments [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1994, 16(9): 920~932 被引量:1

共引文献30

同被引文献19

  • 1祁俐娜,罗述谦.基于VTK的医学图像三维重建[J].北京生物医学工程,2006,25(1):1-5. 被引量:30
  • 2高艳,李坤成,杜祥颖,杨延辉,刘佳宾,刘建.64层CT血管造影诊断颈内动脉狭窄及内膜切除术或支架置入术后随访的价值[J].中华放射学杂志,2006,40(9):948-952. 被引量:21
  • 3Yoon K, Kweon I. Adaptive support-weight approach for correspondence search[J]. IEEE PAMI, 2006, 28(4) : 650-656. 被引量:1
  • 4Baykant B, Alag Z. Obtaining depth maps form color images by region based stereo matching algorithms[J ]. OncuBilim Al- gorithm And Systems Labs, 2008, 8(4) : 1-13. 被引量:1
  • 5Tao Hu, May Huang. A new stereo matching algorithm for binocular vision[C]. Daejeon: International Conference on Con- vergence and Hybrid Information Technology, 2009: 42-44. 被引量:1
  • 6Tombari F, Mattoccia S. Near real-time stereo based on effective cost aggregation[C]. Tampa: International Conference on Pattern Recognition, 2008: 1-4. 被引量:1
  • 7Tombari F, Mattoccia S, DiStefano L. Segmentation-based adaptive support for accurate stereo correspondence[C]. IEEE PSIVT, University of Bologna, 2007: 427-438. 被引量:1
  • 8Gerrits M, Bekaert P. Local stereo matching with segmentation-based outlier rejection[ C]. Computer and Robot Vision, Canada, 2006. 被引量:1
  • 9Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure[C]. Hong Kong: ICPR, 2006: 15-18. 被引量:1
  • 10Yang Q, Wang L. Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling [J]. IEEEPAMI, 2009, 31(3): 492-504. 被引量:1

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部