期刊文献+

基于随机微分的射频噪声干扰技术研究

RF Noise Jamming Technology Based on Stochastic Differential
下载PDF
导出
摘要 根据随机微分与射频噪声干扰信号处理的内在联系,将随机微分引入到雷达噪声干扰信号处理领域,对射频噪声干扰信号进行了系统地分析。首先建立了射频噪声干扰信号通过雷达中频滤波器后所满足的福克尔-普朗克方程,然后利用群移傅立叶变换(Motion-Group Fouri-er Transform,MGFT)将此偏微分方程化成了齐次线性微分方程组,最后得到了射频噪声干扰信号通过雷达中频滤波器后的概率密度函数。 According to the intrinsic relations between the stochastic differential and the radar jamming signal processing, the stochastic calculus is used in the radar jamming signal processing. The noise jamming signal is particularly analyzed. The Fokker-Planck equation of noise is presented and the Motion-Group Fourier Transform is used by converting the partial differential equation into the homogenous linear differential equations. So the probability density function of noise in the filter is given.
出处 《电子信息对抗技术》 2010年第1期41-44,48,共5页 Electronic Information Warfare Technology
基金 国家自然科学基金资助项目(60872076)
关键词 随机微分 福克尔-普朗克方程 群移傅立叶变换 噪声 stochastic differential Fokker-Planck equation motion-group fourier transform(MGFT) noise
  • 相关文献

参考文献8

  • 1WELSH B M, LINK J N. Accuracy Criteria for Radar Cross Section Measurements of Targets Consisting of Multiple Independent Scatterers [ J]. IEEE Transactions on Antennas and Propagation, 1998, 36(11): 1587- 1593. 被引量:1
  • 2ANASTASSOPOULOS V, LAMPROPOULOS G A, DROSOPOULOS A, et al. High Resolution Radar Clutter Statistics[J ]. IEEE Transactions on Aerospace and Electronic Systems, 1999,35 ( 1 ) :43 - 60. 被引量:1
  • 3RAINAL A J. Monopulse Radars Excited by Gaussian Signals [J]. IEEE Transactions on Aerospace and Electronic Systems, 1966, 2(3) : 337 - 345. 被引量:1
  • 4SHOR M. Performance of Order Statistics CFAR [ J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2) : 214 - 224. 被引量:1
  • 5JOUGHIN I R, WINEBRENNER D P, PERCIVAL D B. Probability Density Functions for Multilook Polarimetric Signatures [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3) : 562 - 574. 被引量:1
  • 6CHIRIKJIAN G S, KYATKIN A B. Engineering Applications of Noncommutative Harmonic Analysis [ M]. Boca Raton, FL: CRC Press, 2000. 被引量:1
  • 7MILLER W. Lie Theory and Special Functions [M]. New York: Academic, 1968. 被引量:1
  • 8WANG Y F. Applications of Diffusion Processes in Robotics, Optical Communications and Polymer Science [ D]. Baltimore: Johns Hopkins Univ, 2001. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部