摘要
根据随机微分与射频噪声干扰信号处理的内在联系,将随机微分引入到雷达噪声干扰信号处理领域,对射频噪声干扰信号进行了系统地分析。首先建立了射频噪声干扰信号通过雷达中频滤波器后所满足的福克尔-普朗克方程,然后利用群移傅立叶变换(Motion-Group Fouri-er Transform,MGFT)将此偏微分方程化成了齐次线性微分方程组,最后得到了射频噪声干扰信号通过雷达中频滤波器后的概率密度函数。
According to the intrinsic relations between the stochastic differential and the radar jamming signal processing, the stochastic calculus is used in the radar jamming signal processing. The noise jamming signal is particularly analyzed. The Fokker-Planck equation of noise is presented and the Motion-Group Fourier Transform is used by converting the partial differential equation into the homogenous linear differential equations. So the probability density function of noise in the filter is given.
出处
《电子信息对抗技术》
2010年第1期41-44,48,共5页
Electronic Information Warfare Technology
基金
国家自然科学基金资助项目(60872076)
关键词
随机微分
福克尔-普朗克方程
群移傅立叶变换
噪声
stochastic differential
Fokker-Planck equation
motion-group fourier transform(MGFT)
noise