摘要
The application of dams built upstream will change the input conditions, including water and sediment, of downstream fluvial system, and destroy previous dynamic quasi-equilibrium reached by channel streamflow, so indispensable adjustments are necessary for downstream channel to adapt to the new water and sediment supply, leading the fluvial system to restore its previous equilibrium or reach a new equilibrium. Using about 50-year-long hydrological, sedimentary and cross-sectional data, temporal response processes of Toudaoguai cross-section located in the upper Yellow River to the operation of reservoirs built upstream are analyzed. The results show that the Toudaoguai cross-section change was influenced strongly by upstream reservoir operation and downstream channel bed armoring thereafter occurred gradually and extended to the reach below Sanhuhekou gauging station. Besides, median diameter of suspended sediment load experienced a three-stage change that is characterized by an increase at first, then a decrease and an increase again finally, which reflects the process of channel bed armoring that began at Qingtongxia reservoir and then gradually developed downstream to the reach below Sanhuhekou cross-section. Since the joint operation strategy of Longyangxia, Liujiaxia and Qingtongxia reservoirs was introduced in 1986, the three-stage change trend has become less evident than that in the time period between 1969 and 1986 when only Qingtongxia and Liujiaxia reservoirs were put into operation alone. In addition, since 1987, the extent of lateral migration and thalweg elevation change at Toudaoguai cross-section has reduced dramatically, cross-sectional profile and location tended to be stable, which is beneficial to the normal living for local people.
The application of dams built upstream will change the input conditions, including water and sediment, of downstream fluvial system, and destroy previous dynamic quasi-equilibrium reached by channel streamflow, so indispensable adjustments are necessary for downstream channel to adapt to the new water and sediment supply, leading the fluvial system to restore its previous equilibrium or reach a new equilibrium. Using about 50-year-long hydrological, sedimentary and cross-sectional data, temporal response processes of Toudaoguai cross-section located in the upper Yellow River to the operation of reservoirs built upstream are analyzed. The results show that the Toudaoguai cross-section change was influenced strongly by upstream reservoir operation and downstream channel bed armoring thereafter occurred gradually and extended to the reach below Sanhuhekou gauging station. Besides, median diameter of suspended sediment load experienced a three-stage change that is characterized by an increase at first, then a decrease and an increase again finally, which reflects the process of channel bed armoring that began at Qingtongxia reservoir and then gradually developed downstream to the reach below Sanhuhekou cross-section. Since the joint operation strategy of Longyangxia, Liujiaxia and Qingtongxia reservoirs was introduced in 1986, the three-stage change trend has become less evident than that in the time period between 1969 and 1986 when only Qingtongxia and Liujiaxia reservoirs were put into operation alone. In addition, since 1987, the extent of lateral migration and thalweg elevation change at Toudaoguai cross-section has reduced dramatically, cross-sectional profile and location tended to be stable, which is beneficial to the normal living for local people.
基金
National Natural Science Foundation of China, No.40771031 Thanks are expressed to the Yellow River Conservancy Commission and International Network on Erosion and Sedimentation for the permission of access to hydrometric data. We are also grateful to Dr. Wang Xiujie from Tianjin University for his generous help.