期刊文献+

基于水稻高光谱遥感数据的PLS波长选择研究 被引量:10

PLS Wavelength Selection by Hyperspectral Remote Sensing in Rice
原文传递
导出
摘要 对武汉地区不同生长状况下的水稻冠层进行了遥感监测,采用偏最小二乘(PLS)分析方法分别对水稻叶面氮含量、叶绿素含量进行了波长选择研究,并通过构建8种波长组合进行PLS水稻叶面氮含量反演分析和比较,选择出最合适的反演波长。多种波长(波段)组合进行叶面氮含量反演的验证表明,采用552 nm、675 nm7、52 nm7、76 nm的4波长组合是最适合叶面氮含量反演的波长选择结果,同时,采用光谱能量空间变换的形式能较好地改善波长选择的反演效果。 The objective of the present research was to identify and select the spectral wavelength with the partial least square (PLS) method for the study of rice. We use PInS method to select the wavelengths which have the largest weightings for rice leaf biochemical concen trations respectively for leaf nitrogen concentration and chloroghyll-a concentration. In order to evaluate the wavelength selection results, we construct eight kinds of wavelength (bands) combinations for rice leaf nitrogen concentration inversion analysis by PLS. The most appropriate wavelengths are 552 nm,675 nm,752 nm,776 nrn, respectively.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2010年第2期219-223,共5页 Geomatics and Information Science of Wuhan University
基金 国家973计划资助项目(2009CB723905) 国家863计划资助项目(2009AA12Z107) 国家自然科学基金资助项目(40871171)
关键词 高光谱遥感 波长选择 偏最小二乘 水稻 hyperspectral remote sensing wavelength selection PLS rice
  • 相关文献

参考文献11

  • 1Curran P J, Kupiec J A, Smith G M. Remote Sensing the Biochemical Composition of Slash Pine Canopy[J].IEEE Transaction on Geoscience and Remote Sensing, 1997,35(2) :415-420. 被引量:1
  • 2浦瑞良,宫鹏著..高光谱遥感及其应用[M].北京:高等教育出版社,2000:254.
  • 3Becker B L, Lusch D P, Qi Jiaguo. A Classification-based Assessment of the Optimal Spectral and Spatial Resolutions for Great Lakes Coastal We*land Imagery [J].Remote Sensing of Environment, 2005, 108(1):111 -120. 被引量:1
  • 4Wold S, Sjostrom M, Eriksson L. PI.S regression: A Basic Tool of Chemometrics[J]. Chemometrics and Intelligent Laboratory Systems,2001, 58: 109-130. 被引量:1
  • 5王圆圆,陈云浩,李京,蒋金豹.利用偏最小二乘回归反演冬小麦条锈病严重度[J].国土资源遥感,2007,19(1):57-60. 被引量:11
  • 6Chen S, Hong X, Harris C J, et al. Spare Modeling Using Orthogonal Forest Regression with PRESS Statistic and Regularization [J ]. IEEE Transaction on Systems, Man and Cybernetics, 2004,34:898-911. 被引量:1
  • 7Fu Zhouyu, Antonio R K, Terry C, et al. On Automatic Absorption Detection for Imaging Spectroscopy: A Comparative Study[J]. IEEE Transaction on Geoscience and Remote Sensing, 2007,45 (2): 3 827-3 844. 被引量:1
  • 8Rossman G R. Vibrational Spectroscopy of Hy drous Components[C]. Spectroscopic Methods in Mineralogy and Geology: Mineralogical Society of America Reviews in Mineralogy, 1988. 被引量:1
  • 9Minolta Camera Co. Ltd. Chlorophyll SPAD-502 Instruction Manual[C]. Radiometric Instruments Operations, Osaka, Japan, 1989. 被引量:1
  • 10Filella J, Penuelas. The Red Edge Position and Shape as Indicators of Plant Chlorophyll Content, Biomass and Hydric Status[J].Int J Remote Sensing, 1994, 15(7): 1 459 -1 470. 被引量:1

二级参考文献22

  • 1黄文江,黄木易,刘良云,王纪华,赵春江,王锦地.利用高光谱指数进行冬小麦条锈病严重度的反演研究[J].农业工程学报,2005,21(4):97-103. 被引量:26
  • 2刘先勇 袁长迎 段宝福 周方洁.SPSSIO.0统计分析与应用[M].国防工业出版社,2002.. 被引量:1
  • 3李云梅 王秀珍 沈掌泉 等.椭圆分布函数模拟水稻冠层结构.生物数学学报,2002,18(1):105-108. 被引量:1
  • 4Gastellu-Etchegorry J P, Bruniquel-Pinel V. A Modeling Approach to Assess the Robustness of Spectrometric Predictive Equations for Canopy Chemistry[ J]. Remote Sensing of Environment, 2001, 76( 1 ) : 1-15. 被引量:1
  • 5Curran P J. Remote Sensing of Foliar Chemistry[J]. Remote Sensing of Environment, 1989, 30(3). 271-278. 被引量:1
  • 6Jacquemoud S, Baret F. Prospect: A Model of Leaf Optical Properties Spectra[J]. Remote Sens . of Environ , 1990, 34(1) :75-91. 被引量:1
  • 7Jacquemoud S, Ustin S L, Verdebout J, et al. Estimating Leaf Binchemistry Using the Prospect Leaf Optical Properties Model[J]. Remote Sens. of Environ , 1996, 56(3): 194-202. 被引量:1
  • 8Kuusk A. A Muhispectral Canopy Reflectance Model [ J]. Remote Sens. Environ , 1994, 50(1): 75-82. 被引量:1
  • 9Kuusk A. A Fast Inverfible Canopy Reflectance Model[J]. Remote Sens . Environ. , 1995,5(3) : 342-350. 被引量:1
  • 10Kuusk A. Determination of Vegetation Canopy Parameters from Optical Measurements[J]. Remote Sens. Environ , 1991, 37(3) : 207-218. 被引量:1

共引文献42

同被引文献175

引证文献10

二级引证文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部