摘要
针对窜流型油藏的特点,抽象出物理原型,同时考虑纵向和横向扩散,建立层内突进传质扩散数学模型.应用拉普拉斯变换,求得层内突进传质扩散数学模型的解析解,并得到小段塞情况下的解析解.应用通用有限元分析软件,建立层内突进传质扩散的几何模型,并求得层内突进传质扩散数学模型的数值解.绘制层内突进传质扩散数学模型的浓度分布二维剖面及不同时间步的浓度变化剖面;通过无因次距离和无因次浓度关系及孔隙体积与无因次浓度关系可以看出,贝克莱特(Pe)数越大,峰值浓度越高,见剂时间越晚.通过解析解及数值解结合的方法,可加深对传质扩散本质的理解.
We establish a 2D diffusion mathematic model considering transverse diffusion and feature of channeling reservoir. With Laplace transform an analytical model is solved. A solution with small slug is found. With general-purpose finite element software in a geometrical model numerical solution is solved. 2D concentration profile is ploted. It is shown that larger Peclet number leads to higher peak concentration and later break through time. With combination of analytic solution and numerical solution, it is helpful in understanding the essential of mass transfer diffusion.
出处
《计算物理》
EI
CSCD
北大核心
2010年第1期45-50,共6页
Chinese Journal of Computational Physics
基金
中石油风险基金(聚驱后油层动态非均质性的示踪剂解释技术研究)
863(渤海油田聚合物驱提高采收率技术研究(200701209400))资助项目
关键词
层内突进
传质扩散数学模型
横向扩散
解析解
数值解
water channeling reservoir
tranport mathmatic model
trauverse transport
analytical solution
numerical solution