期刊文献+

利用神经网络方法建立热带气旋强度预报模型 被引量:12

A Neural Network Approach to Predict Tropical Cyclone Intensity
下载PDF
导出
摘要 以神经网络方法为基础,建立西北太平洋热带气旋强度预测模型,模型首先进行历史相似热带气旋选择。从选择的样本出发,计算得到一组气候持续因子、天气学经验因子和动力学因子,对这些因子采用逐步回归方法进行筛选,将筛选得到的因子同对应时效的热带气旋强度输入神经网络训练模块,从而得到优化的预测模型。从2004—2005年西北太平洋26个热带气旋过程对12,24,36,48,72 h等不同预报时效分别进行的634,582,530,478,426次预测试验结果的统计来看,相对于线性回归模型预测水平,该模型显著降低了各时段的预测误差。从几个热带气旋个例的预测结果来看,该模型对超强台风,以及具有强度迅速加强、再次加强等特征的热带气旋过程均有很好的描述能力。 An artificial neural network(ANN) technique is used to predict tropical cyclone intensity change in the Western North Pacific basin and the efficacy is examined.The intensity change forecasts produced by the ANN model are compared to the results of a model developed using linear regression by National Hurricane Center(NHC) at 12-hour,24-hour,36-hour,48-hour,72-hour forecast periods.The date,location,track,intensity and the intensity change similarities is used to identify a historical analog tropical cyclone to the current tropical cyclone.Once the analog tropical cyclone are identified,the climatology and persistence variables,such as the previous 6-hour intensity change,location of the tropical cyclone center,current intensity at the time of the observation,are computed from the China Meteorological Administration(CMA) best-track dataset.The synoptic and dynamics variables,such as vertical sheer,sea surface temperature are computed from the National Centers for Environmental Prediction(NCEP) reanalysis data and the weekly sea surface temperature dataset.These variables and intensity of the tropical cyclone are combined as a training set to identify the variables that are best correlated with tropical cyclone intensity.The variables are used to train a neural network which uses BP algorithm as a learning rule to get the best forecast model.26 tropical cyclone processes in Western North Pacific for 2004—2005 are used to compare the ANN model with linear regression.The number of forecast cases at 12-hour,24-hour,36-hour,48-hour,72-hour forecast periods is 634,582,530,478,426 respectively.The preliminary results suggest that,errors of the ANN model are significantly smaller comparing to linear regression for the 12-hour,24-hour,36-hour,48-hour,72-hour forecast periods.This improvement is the result of the analog tropical cyclones selection and variables filter for a given tropical cyclone.Several case studies show that the ANN model is able to reproduce the processes of super typhoon and tropical
出处 《应用气象学报》 CSCD 北大核心 2009年第6期699-705,共7页 Journal of Applied Meteorological Science
基金 中国科学院大气物理研究所大气科学和地球流体力学国家重点实验室开放课题(2709) 中国气象局上海台风研究所开放课题(2006STB02)共同资助
关键词 热带气旋 神经网络 强度预报 tropical cyclone artificial neural networks intensity forecast
  • 相关文献

参考文献20

  • 1Neumann C J. An Alternate to the Hurrah Tropical Cyclone Forecast System. NOAA Tech Memo NWS SR-62, 1972. 被引量:1
  • 2Pike A C. Geopotential heights and thicknesses as predictors of Atlantic tropical cyclone motion and intensity. Mon Wea Rev, 1985, 113: 931-939. 被引量:1
  • 3Kurihara Y, Bender M A, Tuleya R E, et al. Improvements in the GFDL hurricane prediction system. Mon Wea Rev, 1995, 123: 2791-2801. 被引量:1
  • 4王诗文.国家气象中心台风数值模式的改进及其应用试验[J].应用气象学报,1999,10(3):347-353. 被引量:16
  • 5DeMaria M, Mainelli M, Shay L K, et al. Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea Forecasting, 2005, 20: 531-543. 被引量:1
  • 6DeMaria M. Statistical Tropical Cyclone Intensity Forecast Improvements Using GOES And Aircraft Reconnaissance Data. 27th Conference on Hurricanes and Tropical Meteorology, 2006. 被引量:1
  • 7Rhome J R. On the Calculation of Vertical Shear: An Operational Perspective. 27th Conference on Hurrieanes and Tropical Meteorology, 2006. 被引量:1
  • 8金龙著..神经网络气象预报建模理论方法与应用[M].北京:气象出版社,2004:218.
  • 9Baik J, Hwang H. Tropical cyclone intensity prediction using regression method and neural network. J Meteor Soc Japan, 1998, 76:711-717. 被引量:1
  • 10McGauley M G. Hurricane Intensity Forecasting with Neural Networks, http://rsmas.miami. edu/divs/mpo/About_ MPO/Seminars/2004/0405_McGauley_Abst ract. pdf. 被引量:1

二级参考文献6

共引文献15

同被引文献174

引证文献12

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部