期刊文献+

基于Labview和VC的脑机接口系统设计 被引量:1

Design of a Brain-computer Interface System Based on Labview and VC
下载PDF
导出
摘要 目的:在Active One生理信号采集系统基础上采用Labview和VC编程实现基于视觉诱发电位的脑机接口实时系统。方法:数据采集软件采用Labview编程实现,采用VC编程实现脑机接口人机界面、实时信号处理及动态链接库,Labview和VC通过动态链接库共享内存实现数据传输。视觉刺激界面设计采用了多媒体定时、DirectDraw技术和并口输出技术。采用累加平均与5点平均滤波提取视觉诱发电位信号,再通过计算相关系数实现信号识别。结果:实验表明,刺激模块能产生有效的视觉刺激。基于动态链接库的数据传输能满足系统要求,实现VC与Labview程序的同步控制。结论:本文提出的实时信号处理方法能提高信噪比,实现视觉诱发电位的提取与识别,判断出受试者所注视的目标,并将结果实时反馈到人机界面,实现了脑机接口实时系统。 Objective: Labview and VC were used to design software based on the Active One biopotential measurement system to realize the visual evoked potential based brain-computer interface. Methods: The data acquisition software was designed by Labview, the human-interface, real time signal processing and dynamic link library software were designed by VC. Data transmission between Labview and VC was realized through the dynamic link library using shared memory technology. The multimedia timer, DirectDraw technology and parallel port data output were used to design the visual stimulation interface. The 5 points averaging filter combining with averaging method were used to detect the visual evoked potential and the correlation coefficient was computed for signal recognization. Results: The experiments showed that the visual stimulator can produce effective visual stimulation. The data transmission method using the dynamic link library can satisfy the requirement of the system. Conclusions: The real-time signal processing method can improve signal-noise ratio and realize detection and recognization of visual evoked potential. The system can determine which module the subject was fixating and the result was feedback to the subject in real time.
出处 《中国医学物理学杂志》 CSCD 2010年第1期1638-1640,1644,共4页 Chinese Journal of Medical Physics
基金 国家自然科学基金项目(No.30300418) 重庆市科技攻关计划项目(CSTC 2009AC5023)
关键词 脑机接口 视觉诱发电位 动态链接库 信号处理 brain-computer interface visual evoked potential dynamic link Library(DLL) signal processing
  • 相关文献

参考文献6

二级参考文献13

  • 1J.R.Wolpaw, et al. Brain-Computer Interface Technology[J].IEEE Trans. Rehab. Eng.,2000,8:164- 173. 被引量:1
  • 2松下电工株式会社编.FPO可编程控制器[M].日本:松下电工株式会社,2000.. 被引量:1
  • 3Hyvarinen A.Fast and robust fixed-point algorithm for independent component analysis[].IEEE Transactions on Neural Networks.1999 被引量:1
  • 4Amari SI,Cichocki AC.Adaptive blind signal processing-Neural network approaches[].Proceedings of the IEEE.1998 被引量:1
  • 5Cardoso JF.Blind signal processing[].Proceedings of the IEEE.1998 被引量:1
  • 6Cardoso JF.Higher order contrasts for independent component analysis[].Neural Computation.1999 被引量:1
  • 7Amari SI.Natural gradient works effciently in learning[].Neural Computation.1998 被引量:1
  • 8Cichocki A,Unbehanen R,Rummert E.Robust learning algorithm for blind separation of sources[].Electronics Letters.1994 被引量:1
  • 9Lee TW,Amari SI,Cichocki AC.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super -Gaussian sources[].Neural Computation.1999 被引量:1
  • 10Cardoso JF,Laheld BH.Equivariant adaptive source separation[].IEEE Transactions on Signal Processing.1996 被引量:1

共引文献87

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部