摘要
对任意数量选手循环赛程安排问题,提出了一种新的填表算法.在赛程安排表中,行和列为选手编号,表中元素对应某2选手间的某一轮次编号.选手数量为偶数时,按规则填表可得赛程安排;选手数量为奇数时,得到赛程安排需经偶数化、按算法填表和去偶数化3个步骤.该算法时间和空间复杂度都为O(n2).
A novel filling schedule algorithm was proposed for the round robin calendar problem with arbitrary competitors. Among schedules calendar, the number of rows is the ID of each competitor and elements of the schedule correspond to a certain round serial number of some two competitors. Competition schedule can be filled by the algorithm when the number of competitors is even. If the number of competitors is odd, the schedule will be filled through three steps:even transforming, table filling and even eliminating. It is proved that time and space complexity of the algorithm are all O(n^2).
出处
《郑州轻工业学院学报(自然科学版)》
CAS
2009年第6期15-17,22,共4页
Journal of Zhengzhou University of Light Industry:Natural Science
基金
国家科技支撑计划项目(2006BAK01A38)
河南省杰出青年科学基金项目(0612000600)
河南省自然科学基金项目(0611052300)
关键词
循环赛
填表算法
构造
复杂度
round robin filling
algorithm schedule
structure
complexity