期刊文献+

适用于复杂系统仿真试验的试验设计方法 被引量:7

Studies on the Optimization of Latin hypercube designs for Complex System Simulation
下载PDF
导出
摘要 拉丁超立方试验设计是"充满空间"试验设计方法的重要领域。传统拉丁超立方试验设计优化以列相关系数最小化或试验点之间最大距离最小为单一优化准则,这种单目标试验设计优化方法存在缺陷。提出了将两类优化准则作为优化目标的多目标优化准则,以及实现多目标优化的改进ESE算法。算例分析证明,提出的试验设计优化算法优于已有典型试验设计方法。 The optimization of Latin hypercube design is an important area of the space filling experimentations. The existing procedures to find optimal LHD by minimizing the pairwise correlations or maximizing the minimum inter-site distance in traditional LHD optimization are intreduced, and their drawbacks are discussed in these methods. This paper proposes a multi-objective optimization approach to find optimal LHD by combining pairwise correlation and the maximin inter-site distance performance measures by modified ESE algorithm. Several examples are presented to show that the optimal designs are good in terms of both the crrelation and distance criteria.
作者 刘新亮 郭波
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2009年第6期95-99,共5页 Journal of National University of Defense Technology
基金 国家部委资助项目
关键词 复杂系统仿真试验 拉丁超立方设计 多目标优化 complex system simulation Latin hypercube designs multi-objective optimization
  • 相关文献

参考文献7

  • 1黄柯棣,鞠儒生,黄健,尹全军,刘宝宏.基于数据耕种的作战仿真理论及其关键技术研究综述[J].系统仿真学报,2008,20(13):3337-3341. 被引量:10
  • 2方开泰.均匀试验设计的理论、方法和应用——历史回顾[J].数理统计与管理,2004,23(3):69-80. 被引量:161
  • 3Jin R C, Wei C, Agus S. An Efficient Algorithm for Constructing Optimal Design of Computer Experiments [J]. Journal of Statistical Planning and Inference, 2005, 134 (1): 268-287. 被引量:1
  • 4Owen A B. Orthogonal Arrays for Computer Experiments, Integration and Visualization [J]. Statistica Sinica, 1992, 2:439 - 452. 被引量:1
  • 5Morris M D, Mitchell T J. Exploratory Designs for Computational Experiments [J]. Journal of Statistical Planning and Inference, 1995, 43 (3): 381 - 402. 被引量:1
  • 6Ye K Q. Orthogonal Column Latin Hypercubes and Their Application in Computer Experiments [ J ]. Journal of the American Statistical Association--Theory and Method, 1998, 93 (444): 1430- 1439. 被引量:1
  • 7Fang K T, Ma C X, Winker P. Centered L2-discrepancy of Pandom Sampling and Latin Hypercube Design, and Construction of Uniform Designs [J]. Mathematics of Computation, 2002(71) : 275 - 296. 被引量:1

二级参考文献8

共引文献168

同被引文献49

引证文献7

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部