摘要
利用牛顿迭代法求解复系数多项式的根,是一种特殊的复有理映射,本文探讨多项式z4+(λ-1)z-λ的牛顿交换待性,其中λ是复变量。
Newton's method is a special rational function to solve the roots of a polynomial in the complex plane. This article describes the behavior of Newton iteration for polynomial z4 +(λ- 1 ) z -λ, where λ is a complex variable. Therefore, the behavior of the orbit of the critical is shown when λis varied.