期刊文献+

随机正交变换法在隐私保持关联规则挖掘中的应用 被引量:2

The Application of Random Orthogonal Transformations in Privacy Preserving Association Rules Mining
下载PDF
导出
摘要 隐私保护是当前数据挖掘领域中一个十分重要的研究方向。本文针对关联规则挖掘中如何保持隐私的问题,采用一种不依赖具体数据的随机正交变换方法,从而解决了在数据集容量很大的情况下,运算量大的问题,并使用传统隐私保护度评价方法与正交变换的方向隐私保护度相结合的方法评价变换的隐私保护度,进而使得结果更符合实际情况。理论分析和论证表明本文中的方法具有很好的隐私性、高效性和适用性。 Privacy preserving is an important direction for data mining research. This paper is concentrated on the issue of protesting the underly- ing attribute values when sharing data for association rules mining, adopts a random orthogonal transformation method without depending on any conerete data and thereby solve the computational problems when handling large data sets. And then evaluates the privacy preserving degree of the random orthogonal transformation using the combination of the traditional evaluation method for privacy preserving degree and the direction privacy preserving degree, thus makes the results be more in line with the actual situation. Theoretical analysis and demonstrations shows that the method in this paper has a very good privacy, efficient and applicability.
出处 《科技和产业》 2010年第1期75-79,共5页 Science Technology and Industry
基金 国家自然科学基金(70971059)
关键词 隐私保护 数据挖掘 关联规则 随机正交变换 privacy preserving data mining association rules random orthogonal transformation
  • 相关文献

参考文献15

二级参考文献53

  • 1付华,沈中和,孙红鸽.矿井瓦斯监测多传感器信息融合模型[J].辽宁工程技术大学学报(自然科学版),2005,24(2):239-241. 被引量:13
  • 2付华,杜晓坤,陈峰.基于Elman网络的超声测距补偿在煤矿机器人中的应用[J].煤炭学报,2005,30(6):783-787. 被引量:12
  • 3付华,冯爱伟,单亚峰,徐耀松,王传英.基于信息融合技术的电机故障诊断[J].辽宁工程技术大学学报(自然科学版),2006,25(4):549-552. 被引量:10
  • 4Goldreich O. Secure Multi-party Computation[Z]. (1998-09-10). http://www.wisdom.weizmann.ac.il/home/oded/publichtml/foc.html. 被引量:1
  • 5Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Without Candidate Generation[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. Dallas, Texas, USA: ACM Press, 2000: 1-12. 被引量:1
  • 6Clifton C, Kantarcioglu M, Vaidya J, et al. Tools for Privacy Preserving Distributed Data Mining[J]. ACM SIGKDD Explorations, 2002, 4(2): 28-34. 被引量:1
  • 7Kantarcioglu M, Clifton C. Privacy Preserving Distributed Mining of Association Rules on Horizontally Partitioned Data[J]. IEEE Trans. on Knowledge and Data Engineering, 2004, 16(9): 1026-1037. 被引量:1
  • 8Cheung D W, Ng V T, Fu A W, et al. Efficient Mining of Association Rules in Distributed Databases[J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 911-922. 被引量:1
  • 9R.Agrawal and R.Srikant.Fast algorithms for mining association rules,Proc.of 20th Intl.Conf.on Very Large Data Bases (VLDB), September 1994. 被引量:1
  • 10A.Evfimievski,J.Gehrke and R.Srikant.Limiting Privacy Breaches in Privacy Preserving Data Mining.Proc.of ACM Symp.on Principles of Database Systems (PODS),June 2003. 被引量:1

共引文献94

同被引文献21

  • 1吕品,陈年生,董武世.面向隐私保护的数据挖掘技术研究[J].计算机技术与发展,2006,16(7):147-149. 被引量:9
  • 2张鹏,童云海,唐世渭,杨冬青,马秀莉.一种有效的隐私保护关联规则挖掘方法[J].软件学报,2006,17(8):1764-1774. 被引量:53
  • 3陈晓明,李军怀,彭军,刘海玲,张璟.隐私保护数据挖掘算法综述[J].计算机科学,2007,34(6):183-186. 被引量:16
  • 4Oliveim S R M.Zainne O R.Protecting aenusitive knowledge by data sanitization[C]//Proc.of the 3rd IEEE International Conference on Data Mining (ICDM'03).Melbourne:[s.n.].2003:613-616. 被引量:1
  • 5Oliveira S R M,Zaiane O R.Privacy preserving farequent itonmet mining[C]//Proc.of the IEEE international conference on Privacy,security and data mining.Msebashi:Australian Computer Society,2002:43-54. 被引量:1
  • 6Agrwal R,Srikant R.Privacy-Preserving Data Mining[C]//In Proc.of the ACM SIGMOD Conference on Management of Data.Dallas,Texas:[s.n.],2000:439-450. 被引量:1
  • 7Oliveim S R M.ZaYane O R.Achieving Privacy Preservation When Sharing Data For Clustering[C]//In Prnc.of the Workshop on Secure Data Management in a Connected World (SDM'04) in conjunction with VLDB'2004.Toronto,Ontario,Canada:[s.n.],2004:67-82. 被引量:1
  • 8Saygin Y.Verykias V S,Elmagarmid A.Privacy Preserving Association Rule Mining[C]//In Proc.of 12th RIDE.[s.l.]:[s.n.],2002:151-158. 被引量:1
  • 9Brumen B,Welzer T.Protecting Medical Data for Analyses[C]//Proceedings of the 15th IEEE Symposium on Computer-based Medical Systems(CBMS 2002).[s.l.]:[s.n.].2002:102-107. 被引量:1
  • 10Le Fevre K.Dewitt D J.Ramakrishmm R.Incognito Efficient full domain k-aonymity[C]//Proceedings of the ACM SICMOD Conference on Management of Data (SIGMOD).Baltimore,Maryland:[s.n.],2005:49-60. 被引量:1

引证文献2

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部