期刊文献+

可除模对环的刻画

Rings Characterized by Divisible Modules
下载PDF
导出
摘要 利用可除模的可除性和延拓性,展开了可除模对一些环的刻画.在给出了有关可除模的主要性质后,定义PR-内射环和SD-环,并得到这两类环的几个等价的特征.最后利用可除模、平坦模和其他几类具有延拓性质的模之间的关系来研究Von Neumann正则环和半单环. In this paper,we characterize some kinds of rings through the divisiblity and continuability of the divisible modules.After giving the main conclusion of the divisible modules,we define PR-injective rings and SD-rings.We obtain some equivalent characterization of two kinds of rings.Finally,we study Von Neumann regular rings and semisimple rings by investigating the relations among divisible modules,flat modules and other four kinds of modules with extending properties.
作者 夏章生
出处 《湖北民族学院学报(自然科学版)》 CAS 2009年第4期376-379,共4页 Journal of Hubei Minzu University(Natural Science Edition)
基金 湖北省教育厅重点科研项目(B200529001)
关键词 可除模 PR-内射模 PR-内射环 SD-环 Von Neumann正则环 divisible modules PR-injective modules PR-injective rings SD-rings Von Neumann regular rings
  • 相关文献

参考文献15

  • 1Rotman J J. An introduction to homological algebra[ M]. Academic Press, 1979. 被引量:1
  • 2Stenstrom B. Coherent rings and FP- injective modules[ J]. J London Math Soc, 1970,2 (2) :323 -329. 被引量:1
  • 3Damiano R F. Coflat rings and modules[J]. Paci J of Math,1997,81 (2) : 349 -369. 被引量:1
  • 4Ming R Y C. On V -rings and prine rings[ J]. J of Alg,1980,62:13 -20. 被引量:1
  • 5章聚乐,陈建龙.p-内射环和半素环[J].数学杂志,1991,11(1):29-34. 被引量:14
  • 6Megibben C. Absolutely Pure modules[J]. Proc Amer Math Soc,1970,6(3) :561 -566. 被引量:1
  • 7Michler G O, Villamayor O E. On rings whose simple modules are injective[ J]. J of Alg, 1973,25 : 185 -201. 被引量:1
  • 8Wu Z X, Xia Q L. Rings whose simple modules are absolutely pure [ J ]. Com in Alg,2001,29 (4) :1 477 -1 485. 被引量:1
  • 9Ramamurth V S. On the injectivity and flatness of certain cyclic modules[ J]. Proc Amer Math Soc, 1975,48 ( 1 ) : 21 - 25. 被引量:1
  • 10Colby R R. Rings Which have flat injective modules [ J]. J of Alg, 1975,35:239 -252. 被引量:1

二级参考文献9

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部