期刊文献+

基于增广泛函的混合时滞区间神经网络的鲁棒稳定性

Robust stability of interval neural networks with mixed time-delays via augmented functional
下载PDF
导出
摘要 本文针对一类带有混合时变时滞(离散和分布时滞)的区间递归神经网络进行了全局鲁棒稳定性研究.与之前的处理方法不同,在本文中通过使用一种新型的增广Lyapunov-Krasovskii泛函,从而得到了一类新颖的关于区间递归神经网络的时滞依赖全局鲁棒稳定性判据.在新的增广泛函中,由于首次使用了带有激活函数的积分项,系统状态和激活函数之间的关系将被更好地表示出来.因此,本文提出的判据具有更小的保守性.同时,在本文提出的判据中,放松了时变时滞变化率必须小于1的限制.仿真结果进一步证明了本文结果的有效性. Global robust stability of interval recurrent neural networks with mixed time-varying delays (discrete timevarying delay and distributed time-varying delay) is investigated. Being different from existing reports, the novel delaydependent robust stability criteria for interval recurrent neural networks with mixed time-varying delays employ a new augmented Lyapunov-Krasovskii functional. In the new augmented functional, we introduce an integral term to the activation function, which gives a preferable representation of the relation between states of the system and the activation function. Because of the new functional, the criteria proposed in this paper are less conservative than the currently existing ones. Moreover, the employment of the Jensen's inequality in proving the criteria relaxes the restriction on the time derivative of the time-varying delay in the proposed criteria. The simulation is provided to verify the effectiveness of the proposed results.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2009年第12期1325-1330,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60774048 60728307) 高校博士点基金资助项目(20070145015) 高等学校学科创新引智计划资助项目(B08015)
关键词 区间递归神经网络 全局鲁棒稳定 混合时滞 时滞依赖 增广Lyapunov-Krasovskii泛函 线性矩阵不等式 interval recurrent neural networks global robust stability mixed time-delays delay-dependent augmented Lyapunov-Krasovskii functional linear matrix inequality
  • 相关文献

参考文献14

  • 1ZHANG H G, WANG Y C. Stability analysis of Markovian jumping stochastic Cohen-Grossberg neural networks with mixed time delays[J]. IEEE Transactions on Neural Networks, 2008, 19(2): 366- 370. 被引量:1
  • 2ZHANG H G, WANG Z S, LIU D R. Global asymptotic stability of recurrent neural networks with multiple time-varying delays[J]. IEEE Transactions on Neural Networks, 2008, 19(5): 855 - 873. 被引量:1
  • 3ZHANG H G, WANG Z S, LIU D R. Robust exponential stability of cellular neural networks with multiple time varying delays[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2007, 54(8): 730 - 734. 被引量:1
  • 4WANG Z S, ZHANG H G, YU W. Robust exponential stability analysis of neural networks with multiple time delays[J]. Neurocomputing, 2007, 70(13/15): 2534 - 2543. 被引量:1
  • 5ZHAO Z J. Global exponential robust periodicity and stability of interval neural networks with both variable and unbounded delays[J]. Chaos, Solitons and Fractals, 2008, 36(1): 91 - 97. 被引量:1
  • 6LI C D, LIAO X F. Global robust stability criteria for interval delayed neural networks via an LMI approach[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2006, 53(9): 901 - 905. 被引量:1
  • 7SHEN T, ZHANG Y. Improved global robust stability criteria for delayed neural networks [J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2007, 54(8): 715 - 719. 被引量:1
  • 8CAO J D, WANG J. Global asymptotic and robust stability of recurrent neural networks with time delays[J]. IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2005, 52(2): 417 - 426. 被引量:1
  • 9OZCAN N, ARIK S. Global robust stability analysis of neural networks with multiple time delays[J]. 1EEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 2006, 53(1): 166 - 176. 被引量:1
  • 10SINGH V. On global robust stability of interval Hopfield neural networks with delay[J]. Chaos, Solitons and Fractals, 2007, 33(4): 1183 - 1188. 被引量:1

二级参考文献13

  • 1CHUA L O,YANG L.Cellular neural networks:theory and applications[J].IEEE Trans on Circuits Systems I,1988,35(10):1257 -1290. 被引量:1
  • 2GOPALSAMY K,HE X.Delay-independent stability in bidirectional associative memory networks[J].IEEE Trans on Neural Networks,1994,5(6):998-1002. 被引量:1
  • 3LIAO X,CHEN G,SANCHEZ E.Delay-dependent exponential stability analysis of delayed neural networks:an LMI approach[J].Neural Networks,2002,15(7):855-866. 被引量:1
  • 4ZHANG Q,MA R,WANG C,et al.On the global stability of delayed neural networks[J].IEEE Trans on Automatic Control,2003,48(5):794-797. 被引量:1
  • 5ZHOU D,ZHANG L,CAO J.On global exponential stability of cellular neural networks with Lipschitz-continuous activation function and variable delays[J].Appl Math Comput,2004,151(2):379-392. 被引量:1
  • 6ZHOU D,CAO J.Globally exponential stability conditions for cellular neural networks with time-varying delays[J].Appl Math Comput,2002,131(2-3):487-496. 被引量:1
  • 7ARIK S.An analysis of exponential stability of delayed neural networks with time varying delays[J].Neural Networks,2004,17(7):1027-1031. 被引量:1
  • 8YUCEL E,ARIK S.New exponential stability results for delayed neural networks with time-varying delays[J].Physical D,2004,191(3-4):314-332. 被引量:1
  • 9ZHANG Q,WEI X,XU J.An analysis on the global asymptotic stability for neural networks with variable delays[J].Phys LettA,2004,328(2-3):163-169. 被引量:1
  • 10ZHANG Q,WEI X,XU J.Delay-dependent exponential stability of cellular neural networks with time-varying delays[J].Chaos,Solitons& Fractals,2005,23(4):1363-1369. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部