期刊文献+

基于采样的二维独立分量分析的单训练样本人脸识别 被引量:5

Sampled two-dimensional ICA for face recognition with single training image per person
下载PDF
导出
摘要 人脸识别是当前人工智能和模式识别的研究热点。二维独立分量分析(two-dimensional independentcomponent analysis,2DICA)是人脸特征描述和识别地一种非常有效的方法,但是必须有一定数量和代表性的训练样本的支持。当仅有一个训练样本时,该方法中的协方差矩阵就变成了零矩阵,方法就会失效。针对这一问题,提出了一种基于采样二维独立分量分析(sampled two-dimensional independent component analysis,S2DICA)人脸识别方法。该方法是在2DICA运算之前,首先对单训练样本进行采样,通过多频率采样可以获取多个不同频率下的采样样本,然后对采样样本进行2DICA特征提取,最后采用神经网络分类识别,对人脸库ORL和YEL作了相关实验,将该方法与GREY、PCA、ICA、2DICA、PC PCA、FLDA、Sampled FLDA等传统方法作了比较,最终证明了该方法可以有效地解决单训练样本人脸识别的问题。 Face recognition is an active research area in the artificial intelligence. Two-dimensional independent component analysis is an efficient method of face features descriptions and recognition, but it must depend on a lot of representative raining samples. The method will become invalidation and the scatter matrix will become a zero matrix when any class or person has only one training pattern available. This paper proposed a face recognition algorithm using sampled two-dimensional independent component analysis based on this problem. The method obtained multiple training samples from a single face image by multi channel sampling before two-dimensional independent component analysis transformation. Experimental results on the ORL face database and YALE face database show that the proposed method is feasible and has higher recognition performance compared with GREY, PCA, ICA, 2DICA, projection combined PCA, FLDA, sampled FLDA and other algorithms where only one sample image per person is available for training.
作者 高涛 何明一
出处 《计算机应用研究》 CSCD 北大核心 2010年第1期345-347,共3页 Application Research of Computers
  • 相关文献

参考文献7

  • 1WU X ,ZHOU Z H. Face recognition with one training image per person [ J ]. Pattern Recognition Letters,2002,23 (4) : 1711-1719. 被引量:1
  • 2ZHANG Dao-qiang, CHEN Song-can, ZHOU Zhi-hua. A new face recognition method based on SVD perturbation for single example image per person[ J]. Applied Mathematics and Computation,2005, 163(2) :895-907. 被引量:1
  • 3何家忠,杜明辉.基于小波的训练样本增强的单样本人脸识别[J].计算机工程与应用,2006,42(27):197-199. 被引量:3
  • 4MANDUCHI R, PORTILLA J. Independent component analysis of textures [ C ]//Proc of International Conference on Computer Vision. 1999:98-104. 被引量:1
  • 5LEE T W, LEWICKI M S. Unsupervised image classification, segmenration; and enhancement using ICA mixture models[ J]. IEEE Trans on Image Processing,2002,11 (3) :270- 2?9. 被引量:1
  • 6YIN Hong-tao, FU Ping, MENG Sheng-wei. Sampled FLDA for face recognition with single training image per person [ J ]. Neurocomputing ,2006,69(16-18) :2443-2445. 被引量:1
  • 7甘俊英,李春芝.基于小波变换的二维独立元在人脸识别中应用[J].系统仿真学报,2007,19(3):612-615. 被引量:15

二级参考文献14

  • 1Chellappa R,Wilson C L,Sirohey S.Human and machine recognition of faces:A survey[J].Proceedings of the IEEE,1995;83(5):705~740 被引量:1
  • 2Brunelli R,Poggio T.Face recognition:features versus templates[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993; 15 (10):1042~1052 被引量:1
  • 3Hong Z Q.Algebraic feature extraction of image for recognition[J].Pattern Recognition,1991 ;24(3):211~219 被引量:1
  • 4Tian Y,Tan T N,Wang Y H et al.Do singular values contain adequate information for recognition?[J].Pattern Recognition,2003;36(3):649~655 被引量:1
  • 5Liang Y X,Gong W G,PanY J et al.Research on face recognition based on singular value decomposition[C].In:SPIE Proceedings on biometric technology for human identification,2004:462~469 被引量:1
  • 6Wu X,Zhou Z H.Face recognition with one training image per person[J].Pattern Recognition Letters,2002;23(4):1711~1719 被引量:1
  • 7Daoqiang Zhang,Songcan Chen,Zhi-Hua Zhou.A New Face Recognition Method Based on SVD Perturbation for Single Example Image per Person[J].Applied Mathematics and Computation,2005; 163(2):895~907 被引量:1
  • 8Nastar C,Ayache N.Frequency-based non-rigid motion analysis[J].IEEE Trans on Pattern Anal Mach Intell,1996; 18(11):1067~1079 被引量:1
  • 9BARTLETTMS.Face image analysis by unsupervised learning and redundancy reduction[D].PH.D Thesis of University of California.1998,27-37. 被引量:1
  • 10Jian Yang,David Zhang.Two-Dimensional PCA:A New Approach to Appearance-Based Face Representation and Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2004,26(1):131-137. 被引量:1

共引文献16

同被引文献46

  • 1李强,裘正定,孙冬梅,刘陆陆.基于改进二维主成分分析的在线掌纹识别[J].电子学报,2005,33(10):1886-1889. 被引量:36
  • 2陶俊伟,姜威.改进的基于二维主分量分析的掌纹识别[J].光学技术,2007,33(2):283-286. 被引量:12
  • 3LUG M, Zhang D, Wang K Q. Palmprint recognition using ei- genpalms features[J]. Pattern Recognition Letters, 2003,24 ( 9- 10) : 1463-1467. 被引量:1
  • 4TAO Jun-wei, JIANG Wei, ZAN Gao, et al. Palmprint recogni- tion based on 2-dimension PCA[A]. First International Confer- ence on Innovative Computing, Information and Control[C]. 2006,1:326-330. 被引量:1
  • 5Connie T,Jin A T B,Ong M G K,et al. An automated palmprint recognition system[J]. Image and Vision Computing, 2005,23 (5) :501-515. 被引量:1
  • 6SHANG Li, HUANG De-shuang, DU Ji-xiang, et al. Palmprint recognition using FastlCA algorithm and radial basis probabi- listic neural network[J].Neurocomputing, 2006,69 ( 13-15 ) : 1782-1786. 被引量:1
  • 7GAN Jun-ying, LI Chun-zhi. 2D-ICA baed on wavelet transfor- mation and applications in face recognition[J]. Jurnal of Sys- tem Simulation,200?,lg(3) :612-615. 被引量:1
  • 8Wu X Q, Zhang D,Wang K Q. Fisherpalms based palmprint recognition[J].Pattern Recognition Letters, 2003,24 ( 15 ): 2829-2838. 被引量:1
  • 9GUO Jin-yu,YUAN Wei-qi. Palmprint recognition based on ker- nel principal component analysis and Fisher linear discriminant [J]. Journal of Optoelectrorics · Laser, 2008,19 (12) = 1698- 1701. 被引量:1
  • 10Sergey A A, Harald S, Alexander K, et al. Monte carlo algo- rithm for least dependent non-negative mixture decomposition[J].Analytical Chemistry,2006,78(5) : 1620-1627. 被引量:1

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部