期刊文献+

基于改进粒子群算法的隐马尔可夫模型训练 被引量:11

Adaptive particle swarm optimization for hidden Markov model training
下载PDF
导出
摘要 针对隐马尔可夫模型传统训练算法易收敛于局部极值的问题,提出一种带极值扰动的自适应调整惯性权重和加速系数的粒子群算法,将改进后的粒子群优化算法引入到隐马尔可夫模型的训练中,分别对隐马尔可夫模型的状态数与参数进优化。通过对手写数字识别的实验说明,提出的基于改进粒子群优化算法的隐马尔可夫模型训练算法与传统隐马尔可夫模型训练算法Baum-Welch算法相比,能有效地跳出局部极值,从而使训练后的隐马尔可夫模型具有较高的识别能力。 To solve the problem that easy to converge to local optimal solutions of hidden Markov model (HMM) training, a selfadaptive particle swarm optimization algorithm with disturbed extremum is presented and it is used in the training of HMM to optimize the state number and parameters of HMM. Comparing the proposed approach with Baum-Welch algorithm HMM training method, the hand-write digits recognition experimental results show that the proposed method is superior to the Baum-Welch training method and make the trained HMM has better recognition ability.
作者 朱嘉瑜 高鹰
出处 《计算机工程与设计》 CSCD 北大核心 2010年第1期157-160,共4页 Computer Engineering and Design
关键词 粒子群优化算法 优化算法 隐马尔可夫模型 隐马尔可夫模型优化 手写数字识别 particle swarm optimization optimization algorithm hidden Markov model hidden Markov model optimize hand- write digits recognition
  • 相关文献

参考文献11

二级参考文献46

共引文献229

同被引文献70

  • 1杨秀芳,陈卓,王驰.基于隐Markov模型的齿轮箱故障识别方法研究[J].电子测量与仪器学报,2020,32(11):115-123. 被引量:6
  • 2徐从福.隐马尔可夫模型[D].杭州:浙江大学人工智能研究所,2005. 被引量:1
  • 3MOORE D, VOELKER G, Savage S. Inferring Internet denial-of-service activity [C]// Proceeding of the 10th USENIX Security Symposium. San Diego: University of California, 2000(1): 9-22. 被引量:1
  • 4WARENDER C, FORREST S, PEARLMUTTER B. Detecting intrusions using system calls: altermative data mode[C]// Proceedings of 1999 IEEE Symposium on Computer Security and Privacy. Oakland, California: IEEE Computer Society Press, 1999: 133-145. 被引量:1
  • 5CHAARI O,MEUNIER M,BROUAYE F. Wavelets:a new tool for the resonant grounded power distribution systems re-laying[J].{H}IEEE Transactions on Power Delivery,1996,(03):1301-1308. 被引量:1
  • 6CHAN K C C,WONG A K C. APACS:a system for the au-tomatic analysis and classification of conceptual patterns[J].{H}COMPUTATIONAL INTELLIGENCE,1990,(03):119-131. 被引量:1
  • 7CHAN K C C,WONG A K C. Statistical technique for ex-tracting classificatory knowledge from databases[M].AAAI/MIT Press,1991.107-124. 被引量:1
  • 8董红斌;贺志.协同演化算法及其在数据挖掘中的应用[M]{H}北京:中国水利水电出版社,200886-89. 被引量:1
  • 9STRUZIK Z R,SIEBES A P J M. Wavelet transform based multifractal formalism in outlier detection and localisation for financial time series[J].{H}PHYSICA A,2002,(03):388-402. 被引量:1
  • 10JUANG B H,RABINER L R. The segmental k-means al-gorithm for estimating the parameters of hidden Markov models[J].IEEE Transactions on Acoustics Speech Sig-nal Processing,1990,(09):1639-1641. 被引量:1

引证文献11

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部