期刊文献+

基于床面形态的泥沙输移模式及其在黄河下游的应用 被引量:4

Bedform-dependent sediment transport model and its application in the Lower Yellow River
下载PDF
导出
摘要 冲积河流系统中,水流在不规则床面上产生的漩涡对泥沙悬浮效率影响很大。基于漩涡流的运动特征及床面形态控制数m,本文研究了水流阻力与床面形态运动之间的关系。同时,在Bagnold泥沙悬浮效率(sηl)概念的基础上,提出了床沙质输沙能力公式,对其中的sηlC*进行了深入研究,建立的sηlC*与1/m的关系,能够反映床面形态由低能态到高能态区的发展过程。研究提出的输沙公式,经黄河下游调水调沙试验等实测资料验证表明,计算结果与实测值特别是相对平衡条件下的实测值吻合较好。在输沙能力公式研究中引入反映床面形态控制参数是一种新的尝试,该方法在研究中显示出较大的发展潜力。 Bed irregularities in shallow alluvial systems induce flow separation and vorticity, which can significantly influence sediment suspension efficiency. Based on the vortex-shedding activity and a control factor m, the link between resistance-to-flow and bedform development is studied. Using Bagnold's resuspension efficiency concept (ηsl ) ,we derive a transport capacity formula for bed-material load. It is suggested that ηslC. in the formula can be deduced from the knowledge of m. In particular, the plot of ηslC. against 1/m appropriately reflects the sequence of bedform development from the lower-to the upper-alluvial regime. The sediment concentrations predicted by the formula in which m has been introduced agree fairly well with the observed during LYR 'silt-flushing experiment', especially those close to sediment-transfer equilibrium conditions in the considered reach. The use of an explicit bedform descriptor in a transport capacity formula is novel and seems very promising.
出处 《泥沙研究》 CSCD 北大核心 2009年第6期48-53,共6页 Journal of Sediment Research
基金 Research-in-Brussels(RiB-2006-14) European Integrated Project AquaTerra (GOCE505428)
关键词 黄河下游 强冲积系统 床面形态控制数 输沙能力 悬浮效率 the Lower Yellow River upper alluvial system bedform control factor sediment transport capacity suspension efficiency
  • 相关文献

参考文献19

  • 1Best, J. L., 1993. On the interactions between turbulent flow structure, sediment transport and bedform development: some considerations from recent experimental research. In : Clifford, N. J., French, J. R. and Hardisty, J., Editors, 1993. Turbulence : Perspectives on Flow and Sediment Transport, Wiley, New York : 61 - 92. 被引量:1
  • 2Vanoni V.A. & Brooks N. H. ( 1957). Laboratory studies of the roughness and suspended load of alluvial streams. Sedimentation Laboratory Report No. E - 68, Caltech, Pasadena, : 121 - 121. 被引量:1
  • 3ASCE Task Committee on Flow and Transport over Dunes (2002). Flow and Transport over dunes, Journal of Hydraulic Engineering, Forum paper :726 - 728. 被引量:1
  • 4钱宁,万兆惠著..泥沙运动力学[M].北京:科学出版社,1983:687.
  • 5Simons D.B.& Richardson E.V. (1966). Resistance to Flow in Alluvial Channel. USGS prof. paper:422- 422. 被引量:1
  • 6Wang, S. J & White, W. R( 1993 ). Alluvial Resistance in Transition Regime, Journal of Hydraulic Engineering, ASCE, 119 (6) : 725 - 741. 被引量:1
  • 7Carstens, M.R. and Altinbilek, H.D. ( 1972). Bed-Material Transport and Bed Forms, Journal of the Hydraulics Division, ASCE, Vol 98, No HY5:787 - 794. 被引量:1
  • 8Antsyferov, S. M., Debol' skii, V. K., and Akivis, T.M. (2004). On the Effect of Bed Conditions on the Formation of Loose Sediment Transport. Vodnye Resursy, Vol. 31 No 6 : 675 - 682 [ in Russian]. 被引量:1
  • 9Verbanek M.A. (2007). How fast can a river flow over alluvium? Journal of Hydraulic Research. In press. 被引量:1
  • 10Gyr A. & Hoyer K. (2006). Sediment Transport, A Geophysical phenomenon, Springer Verlag, Dordreeht, NL: 285 - 285. 被引量:1

二级参考文献19

共引文献64

同被引文献116

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部