期刊文献+

一类次椭圆方程弱解的正则性

Regularity for Weak Solutions of a Class of Subelliptic Equations
下载PDF
导出
摘要 在区域Ω上考虑一类由退化向量场形成的Sch rodinger方程:∑mi,j=1Xi*(aij(x)Xju)-vu=0其中X1,…,Xm为Rn(n 3)上满足H ormander条件的实C∞向量场,X*i为Xi的形式共轭,v属于Kato类的某一类比Kηloc(Ω).并得到以下结果:若u为以上方程的弱解,则Xu 2w=∑mi=1Xiu 2w∈Klηoc(Ω). We considered the weak solution of a class of Schrodinger equation formed by degenerated vector field: ∑i,j=1^mXi^*(aij(x)Xju)-vu=0 where X1,…,Xm are C^∞ vector fields on R^n(n≥)3 satisfying Hormander condition, Xi^* is the formal adjoint of Xi, v belongs to some analogue of the kato-stummel class Kη^loc(Ω).We obtain the following esult., let u be a weak solution of the equation ∑i,j=1^mXi^*(aij(x)Xju)-vu=0,the |Xu|^2w=∑i=1^m|Xiu|^2w∈Kη^loc(Ω).
出处 《应用泛函分析学报》 CSCD 2009年第4期314-317,共4页 Acta Analysis Functionalis Applicata
基金 浙江省教育厅重点项目(Z200803357)
关键词 退化椭圆方程 Kato类 GREEN函数 degenerate elliptic equation Kato class Green function
  • 相关文献

参考文献8

  • 1Aizenman M, Simon B. Brownian Motion and Harnack's inequality for Schrodinger operators[J].Comm Pure Appl Math,1982,35:209-271. 被引量:1
  • 2Chiarenza F, Fabes E, Garofalo N. Harnack's inequality for schrodinger operators and the continuity of solutions[J]. Proc Amer Math Soc,1986,98:415- 425. 被引量:1
  • 3Hinz A M, Kalf H. Subsolution estimates and Harnack's Inequality for Schrodinger operators[J]. J Reine Angew Math, 1990. 404: 118-134. 被引量:1
  • 4Kurata K. Continuity and Harnack's inequality for solutions of elliptic partial differential Equation of second order[J]. Indiana U Math J,1994,43:411- 440. 被引量:1
  • 5Simader C. An elementary proof of Harnack's inequality for Schrodinger operators and related topic[J]. Math Z,1990,203:129- 152. 被引量:1
  • 6Donig J. Finiteness of the lower spectrum of Schrodinger operators with singular potentials[J]. Proc Amer Math Soc,1991,112:489- 501. 被引量:1
  • 7Lu G. Existence and size estimates for the Green's functions of differential operators constructed from degenerate vector feilds[J].Comm PDE,1992,17:1213-1251. 被引量:1
  • 8Lu G. On Harnack's inequality for a class of strongly denerate Schrodinger operators formed by vector fields[J]. Diff and Inte Equ,1994,7:73-100. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部