期刊文献+

遗传神经网络-紫外分光光度法同时测定苯酚、邻苯二酚、间苯二酚和对苯二酚 被引量:1

Simultaneous Determination of Phenol,Catechol,Resorcinol and Hydroquinone by Genetic Neural Network-UV Spectrophotometry
下载PDF
导出
摘要 研究吸收光谱重叠严重的苯酚、邻苯二酚、间苯二酚和对苯二酚的4组分体系,针对神经网络易陷入局部极小等缺陷,将遗传算法与神经网络相结合,用遗传算法优化神经网络的初始权值和阈值,由神经网络输出的误差构造适应度函数,建立遗传神经网络算法,用紫外分光光度法同时测定混合的苯酚、邻苯二酚、间苯二酚和对苯二酚,预测集样品的相对平均误差分别为1.548%,1.6%,2.028%和-1.004%,对自来水水样的加标回收率分别为102.92%,101.53%,105.78%和103.17%。 The four-component system of phenol, catechol, resorcinol and hydroquinone was studied by UV spectrophotometry with serious overlapping peaks. Considering the defects of backpropagation neural network (BP), the model was set up by the optimization of initial weights and thresholds of neural network using genetic algorithm and designing fitness function by output error. The contents of phenol, cateehol, resoreinol and hydroquinone were determined simultaneously by GA-BP-ANN model and ultraviolet spectrophotometry. For phenol, catechol, resorcinol and hydroquinone, the relative mean errors in the prediction set were 1.548%, 1.6%, 2. 028% and - 1.004%, and the recovery rate of water sample were 102.92%, 101.53%, 105.78% and 103. 17%.
出处 《淮海工学院学报(自然科学版)》 CAS 2009年第4期42-45,共4页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
基金 江苏省高校自然科学研究计划项目(05KJB150003) 江苏省海洋生物技术重点建设实验室开放课题(2005HS010) 淮海工学院大学生实验创新课题
关键词 苯酚 邻苯二酚 间苯二酚 对苯二酚 遗传神经网络 紫外分光光度法 phenol catechol resorcinol hydroquinone genetic neural network ultraviolet spectrophotometry
  • 相关文献

参考文献11

  • 1WISE H E,FAHRENTHOLD P D. Predicting priority pollutants from petrochemical prodcesses[J]. Environment Science Technology, 1981,15(11) : 1292-1304. 被引量:1
  • 2成都工学院分析化学教研室编..水质污染分析[M].北京:水利电力出版社,1978:470.
  • 3HASANI M, MOLOUDI M. Application of principal component-artificial neural network models for simultaneous determination of phenolic compounds by a kinetic spectrophotometrie method [J]. Journal of Hazardous Materials, 2008,157 (1) : 161-169. 被引量:1
  • 4曹永生,陈奕卫,祖金凤,朱金林,徐学诚,成荣明.反向传播人工神经网络分光光度法同时测定环境水样中的苯酚、间苯二酚和间氨基酚[J].光谱学与光谱分析,2003,23(4):751-754. 被引量:9
  • 5吴根华,何池洋,陈荣.人工神经网络用于荧光分析法同时测定苯酚和间苯二酚的含量[J].光谱学与光谱分析,2002,22(5):813-815. 被引量:16
  • 6YAO Xin. A review of evolutionary artificial neural networks [J]. International Journal of Intelligent Systems,2007,8(4) :539-567. 被引量:1
  • 7陈国良等编著..遗传算法及其应用[M].北京:人民邮电出版社,1996:433.
  • 8MANIEZZO V. Genetic evolution of the topology and weight distribution of neural networks [J]. IEEE Transactions on Neural Networks, 1994,5 (1) : 39-53. 被引量:1
  • 9JANSON D J, FRENZEL J F. Trainning product unit neural networks with genetic algorithms[J]. IEEE Expert: Intelligent Systems and Their Applications, 1993, 8(5) :26-33. 被引量:1
  • 10周开利,康耀红编著..神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005:255.

二级参考文献15

共引文献23

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部