期刊文献+

基于固定半径包围球的核向量回归算法

Core vector regression algorithm based on enclosing ball with unchanged raclins
下载PDF
导出
摘要 为了进一步提高核向量回归算法用于大样本回归问题的训练速度,提出了一种改进的核向量回归算法。该算法利用样本数据在特征空间中的映射点确定包围球半径,并使该半径在迭代过程中保持不变。通过缩小核心数据集,提高了回归算法的训练速度。对几组回归时间序列预测的仿真实验表明,改进的核向量回归算法的训练时间和支持向量的数目均小于核向量回归算法,但二者具有相似的回归精度,从而验证了改进的核向量回归算法的有效性。 To further increase the training speed of a core vector regression algorithm for large samples, an improved core vector regression algorithm is proposed. This algorithm uses the mapping points of sample data in feature space to obtain the radius of the enclosing ball and makes the radius keep unchanged in the iterative process. By reducing the size of core data set, the training speed is increased. Simulations on prediction of several sets of time series show that on maintaining the same regression accuracy as the core vector regression algorithm, the improved core vector regression algorithm enjoys both less training time and fewer support vectors, so that its efficiency is proved.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第12期2968-2972,共5页 Systems Engineering and Electronics
关键词 回归算法 核向量回归 大样本训练 最小包围球 regression algorithm core vector regression large sample training the smallest enclosing ball
  • 相关文献

参考文献13

  • 1Smola A, Scholkopf B. Sparse greedy matrix approximation for machine learning[C]//Proc, of the 17 th International Conference on Machine Learning, 2000:911 - 918. 被引量:1
  • 2Achlioptas D, Mcsherry F, Scholkopf B. Sampling techniques for kernel methods[C]//Proc, of Advances in Neural Information Processing Systems, 2002, 14:335 -342. 被引量:1
  • 3Fine S, Scheinberg K. Efficient SVM training using low-rank kernel representations[J]. Journal of Machine Learning Research, 2001, 2(11): 243-264. 被引量:1
  • 4Vapnik V N. An overview of statistical learning theory[J].IEEE Trans. on Neural Networks, 1999, 10(5) : 988 - 999. 被引量:1
  • 5Platt J, Scholkopf B, Burges C, et al. Fast training of support vector machines using sequential minimal optimization[C]//Proc. of Advances in Kernel Methods-Support Vector Learning, 1999: 185-208. 被引量:1
  • 6廖东平,魏玺章,黎湘,庄钊文.一种新的支持向量机快速训练算法[J].系统工程与电子技术,2007,29(11):1954-1957. 被引量:7
  • 7Collobert R, Bengio S, Bengio Y. A parallel mixture of SVMs for very large scale problems[J]. Neural Computation, 2002, 14(5): 1105-1114. 被引量:1
  • 8Tsang I W H, Kwok J T Y, Zurada J A. Generalized core vector machines[J].IEEE Trans. on Neural Networks, 2006, 17(5) : 1126 - 1140. 被引量:1
  • 9Bordes A, Ertekin S, Weston J. Fast kernel classifiers with online and active learning[J].Journal of Machine Learning Research, 2005, 6(9) : 1679 - 1619. 被引量:1
  • 10Chappelle O. Training a support vector machine in the primal[J]. Neural Computation, 2007, 19(5) : 1155 - 1178. 被引量:1

二级参考文献10

  • 1安金龙,王正欧.预抽取支持向量机的支持向量[J].计算机工程,2004,30(10):10-11. 被引量:10
  • 2Vapnik V N.The nature of statistical learning theory[M].New York:Springer,1995. 被引量:1
  • 3Burges CJ C.A tutorial on support vector machines for pattern recognition[M].Boston:Kluwer Academic Publishers,1998. 被引量:1
  • 4Cortes C,Vapnik V N.Support vector networks[J].Machine Learning,1995,20(3):273-297. 被引量:1
  • 5Joachims T.Making large-scale SVM learning practical[C]//Advances in Kernel Methods:Support Vector Learning,Cambridge,MA:MIT Press,1998:169-184. 被引量:1
  • 6Platt J C.Fasting training of support vector machines using sequential minimal optimization[C]//Advances in Kernel Methods:Support Vector Learning,Cambridge,MA:MIT Press,1998:185-208. 被引量:1
  • 7Zhang Li,Zhou Weida,Jiao Licheng.Pre-extracting support vectors for support vector machine[C]//Proceedings of the 5 International Conference on Signal Processing,2000(3):1432-1435. 被引量:1
  • 8Ding Ailing,Liu Fang,Li Ying.Pre-extracting support vector by adaptive projective algorithm[C] // Proceedings of the 6 International Conference on Signal Processing,2002(1):21 -24. 被引量:1
  • 9焦李成,张莉,周伟达.支撑矢量预选取的中心距离比值法[J].电子学报,2001,29(3):383-386. 被引量:48
  • 10丁爱玲,刘芳,曹伟.支撑矢量预选取的自适应投影算法[J].计算机工程与应用,2002,38(19):116-118. 被引量:4

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部