期刊文献+

基于价格极差的金融波动率建模:理论与实证分析 被引量:13

Modeling financial volatilities based on price range:theoretical research and empirical study
原文传递
导出
摘要 经典的波动率模型(GARCH等)是收益率为基础的模型,利用的是收盘价信息,忽略了价格波动的日内信息,这将导致信息与效率的损失。为了弥补这一缺陷并获得满意的波动率预测效果,本文引入并扩展了基于价格极差的自回归波动率模型。实证研究表明新模型能够有效刻画波动率的动态变化规律,其预测效果一致性地优于经典的GARCH模型。同时,我们的研究还证实了在波动率模型中加入收益率的滞后项能够提高模型的解释能力,并且存在明显的"杠杆效应"。 The classical volatility models, such as GARCH, are return-based models, which are constructed with the data of closing prices. It might neglect the important intraday information of the price movement, and will lead to loss of information and efficiency. This study introduces and extends the rangebased autoregressive volatility model to make up for these weaknesses and obtain satisfactory volatility predicting performance. The results consistently show that the new model successfully captures the dynamics of the volatility and gains good performance relative to GARCH model. Furthermore, we find that the inclusion of the lagged return can significantly improve the forecasting ability of the volatility model, and the leverage effect does exist in volatility.
出处 《中国管理科学》 CSSCI 北大核心 2009年第6期1-8,共8页 Chinese Journal of Management Science
基金 国家自然科学基金委员会优秀创新研究群体基金(70221001) 教育部人文社会科学研究项目 湖南师范大学社会科学青年学术骨干培养计划(基金)
关键词 波动率建模 价格极差 日内信息 预测绩效 volatility model price range intraday information forecasting performance
  • 相关文献

参考文献26

  • 1Engle, R.F.. Autoregressive conditional heteroskedasticity with estimates of the variance of U. K. inflation [J]. Econometrica, 1982, 50: 982--1008. 被引量:1
  • 2Bollerslev, T.. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31: 307--327. 被引量:1
  • 3Nelson, D. B.. Conditional heteroscedasticity in asset returns: a new approach[J]. Econometrica, 1991, 59: 347--370. 被引量:1
  • 4Taylor, S.J.. Modelling Financial Time Series[M].Wiley, Chichester, UK,1986. 被引量:1
  • 5Andersen, T. G., Bollerslev, T., Diebold, F. X., Ebens, H.. The distribution of realized stock return volatility [J]. Journal of Financial Economies,2001, 61: 43--76. 被引量:1
  • 6Andersen, T. G. , Bollerslev, T. , Diebold, F. X. , Labys, P.. Modeling and forecasting realized volatility [J]. Econometrica, 2003, 71: 529--626. 被引量:1
  • 7Garman, M. B. , Klass, M.J.. On the estimation of price volatility from historical data[J]. Journal of Business,1980, 53: 67-78. 被引量:1
  • 8Parkinson, M.. The extreme value method for estimating the variance of the rate of return [J]. Journal of Business, 1980, 53: 61--65. 被引量:1
  • 9Rogers, E. C. G. , Satchell, S. E.. Estimating variances from high, low, and closing prices[J]. Annals of Applied Probability, 1991, 1 (4) : 504-- 512. 被引量:1
  • 10Yang, D. , Zhang, Q.. Drift-independent volatility estimation based on high, low, open, and close prices [J]. JournalofBusiness, 2000, 73: 477--491. 被引量:1

二级参考文献50

  • 1陆懋祖.《高等时间序列经济计量学》[M].上海人民出版社,1998.. 被引量:3
  • 2Engle R, Gallo G. A multiple indicators model for volatility using intra-daily data[R]. NBER Working Paper 10117,2003. 被引量:1
  • 3Anderen T G,Bollerslev T,Diebold F X. The distribution of realized stock return volatility[J]. Journalof Financial Economics, 2001,61:43 - 76. 被引量:1
  • 4Alizadeh S,Brandt M W,Diebold F X. Range based estimation of stochastic volatility models[J]. Journal of Finance, 2002,57 : 1047-1091. 被引量:1
  • 5Chou R Y. Forecasting financial volatilities with extreme values: the conditional autoregressive range(CARR) model[R]. Adademia Sinica,2001. 被引量:1
  • 6Brand M W, Christofer S J. Volatility forecasting with range-based EGARCH models[R]. Wharton School University of Pennsylvania, 2002. 被引量:1
  • 7Parkinson M. The extreme value method for estimating the variance of the rate of return[J]. Journal of Business, 1980,53 : 61-66. 被引量:1
  • 8Brunetti C. Relative efciency of return-based and range-based volatility estimators[R]. Department of Finance,Johns Hopkins University, 2004. 被引量:1
  • 9Jacquier E, Poison G, Rossi E. Bayesian analysis of stochastic volatility model with fat Heavy-tailed Distributions[Z], www2. bc. edu/jacquier,2001. 被引量:1
  • 10Jacquier E, Poison G, Rossi E. Bayesian Analysis of Stochastic Volatility Models[J]. Journal of Business Economic Statistics, 1994,12:371-390. 被引量:1

共引文献78

同被引文献199

引证文献13

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部