期刊文献+

基于预测模型的WSN节点能量融合机制 被引量:6

Node Energy Aggregation Mechanism Based on Forecast Model in WSN
下载PDF
导出
摘要 分析节点能量衰减的过程,采用节点能量衰减预测模型描述节点能量损耗的规律,并建立基于该预测模型的节点剩余能量汇报机制,从而减少节点能量数据的汇报次数以及节点间的数据通信量,降低节点能耗。实验结果表明,在应用该预测模型后,Telosb节点的电池工作寿命延长1%~4.5%。 Through the analysis of the node energy attenuation, this paper uses energy attenuation forecast model to describe the law of energy consumption. The reporting mechanism based on the forecast model is set up, which can significantly reduce the reporting counts, data traffics in netsworks and node consumption. Experimental results show the working time of Telosb node can expend 1%-4.5% after using this forecast model.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第1期110-111,130,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60773055)
关键词 无线传感器网络 能量预测模型 数据融合 Wireless Sensor Network(WSN) energy forecast model data aggregation
  • 相关文献

参考文献5

  • 1Krishnamachari B. Modelling Data-centric Routing in Wireless Sensor Networks[C]//Proceedings of ,the IEEE Int'l Conf. on Communication. New York, USA: IEEE Computer Society, 2002. 被引量:1
  • 2Rost S. Memento: A Health Monitoring System for Wireless Sensor Networks[C]//Proc. of the 3rd IEEE Communications Society Conf. on Sensor, Mesh and Ad Hoc Communications and Networks. Reston, VA, USA: [s. n.], 2006. 被引量:1
  • 3Deshpande A, Hellerstein J M. Approximate Data Collection in Sensor Networks Using Probabilistic Model[C]//Proceedings of the 22nd International Conference on Data Engineering. Washington D. C., USA: IEEE Computer Society, 2006. 被引量:1
  • 4Kulakov A, Davcev D, Trajkovski G. Application of Wavelet Neural-networks in Wireless Sensor Networks[C]//Proeeedings of the 6th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Washington D. C., USA: IEEE Computer Society, 2005. 被引量:1
  • 5王振龙,胡永宏主编..应用时间序列分析[M].北京:科学出版社,2007:250.

同被引文献68

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部