摘要
考虑暂态稳定约束的最优潮流是一个复杂的非线性优化问题。在基于时域仿真的内点法求解过程中,通常将暂态微分方程差分化并作为该问题的附加等式约束,容易出现维数灾。针对上述不足,提出了一种求解暂态稳定约束最优潮流的降阶内点算法。该算法考虑到差分方法的截断误差,将暂态方程差分为与差分法精度相关的不等式约束,大大降低了内点法中修正方程组的阶数。对多个算例的测试结果显示,该方法与常规方式相比,消耗的计算时间和内存更少,能够对更大规模的电力系统进行求解。
Transient stability constrained optimal power flow is a complex nonlinear optimization problem. In the interior point method solution based on time domain simulation, transient differential equations are generally discretized and considered as additional equality constraints, which will easily suffer from the curse of dimensionality. Aiming at the deficiencies, an order- reduced interior point algorithm is developed. Taking the truncation error of specific discretization method into account, the proposed algorithm discretizes the transient equations into difference precision related inequality constraints and greatly reduces the order of correction equations in interior point method. Test results on several cases indicate that the proposed algorithm consumes much less time and memory compared with conventional approach, and it has the potential to deal with larger power systems.
出处
《电力系统自动化》
EI
CSCD
北大核心
2009年第24期21-25,87,共6页
Automation of Electric Power Systems
基金
国家自然科学基金资助项目(50977082)
教育部新世纪优秀人才支持计划资助项目(NCET-08-0489)
教育部科学技术研究重点项目(107063)
浙江省自然科学基金资助项目(R1080089)~~
关键词
最优潮流
暂态稳定
差分不等式
降阶内点法
optimal power flow
transient stability
difference inequalities
order-reduced interior point method