期刊文献+

三维空间中耦合非线性Klein-Gordon方程组整体解存在的最佳条件(英文) 被引量:1

Sharp Threshold of Global Existence for the Coupled Nonlinear Klein-Gordon Equations in Three Space Dimensions
原文传递
导出
摘要 本文用变分法研究三维空间中一类耦合非线性Klein-Gordon方程组.通过构造一类交叉强制变分问题,并建立对应于该方程组的发展流的交叉不变流形,得到该方程组解爆破和整体存在的最佳条件,并证明了当初值为多小时,该方程组的整体解存在这个问题. In this paper,a variational approach is first presented to study a class of coupled nonlinear Klein-Gordon equations in three space dimensions.By constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow,a sharp threshold for blowing up and global existence is obtained and how small the initial data are for the global solutions to exist is shown.
出处 《数学进展》 CSCD 北大核心 2009年第6期731-744,共14页 Advances in Mathematics(China)
基金 supported by NSFC(No.10771151,No.10726034,No.10801102) Sichuan Youth Sciences and Technology Foundation(No.07ZQ026-009).
关键词 最佳条件 耦合非线性Klein-Gordon方程组 交叉强制变分问题 整体解 爆破 sharp threshold coupled nonlinear Klein-Gordon equations cross-constrained variational problem global existence blowup
  • 相关文献

参考文献1

二级参考文献20

  • 1Hayata K., Koshiba M., Multidimensional solitons in cubic nonlinear media, Optics Letters, 19(21)(1994), 1717-1719. 被引量:1
  • 2Newboult G. K., Parker D. F., Faulkner T. R., Coupled nonlinear Schrodinger equations arising in the study of monomode step-index optical fibers, J.Math.Phys., 30(4)(1989),930-936. 被引量:1
  • 3Radhakrishnan R., Sahadevan R., Lakshmanan M., Integrability and singularity structure of coupled nonlinear SchrSdinger equations, Chaos, Solitons and Fractals, 5(12)(1995),2315-2327. 被引量:1
  • 4Akhmanov S. A., Sukhorukov A. P. and Khokholov R. V., Self-focusing and self-trapping of intense light beams in a nonlinear medium, Soy. Phys. JETP, 23(1966), 1025-1033. 被引量:1
  • 5Zakharov V. E., Collapse of Langmuir waves, Soy. Phys. JETP, 35(1972), 908-922. 被引量:1
  • 6Glassey R. T., On the blowing up of solutions to the Cauchy problem for nonlinear Schrodinger equations, J.Math.Phys., 18(9)(1977), 1794-1797. 被引量:1
  • 7Tsutsumi M., Nonexistence of global solutions to the Cauchy problem for nonlinear Schrodinger equations, Comm. Math.Phys., 81(1999), 467-476. 被引量:1
  • 8Ogawa T., Tsutsumi Y., Blow-up of H1 solution for the nonlinear SchrSdinger equation,J. Differential Equations, 92(2)(1991), 317-330. 被引量:1
  • 9Ogawa T., Tsutsumi Y., Blow-up of H1 solution for the nonlinear Schr6dinger equation with critical power nonlinearity, Proceedings of the American Mathematical Society,111(2)(1991), 487-496. 被引量:1
  • 10Ginibre J., Velo G., On a class of nonlinear SchrSdinger equations, I. The Cauchy Problem,general case, J. Funct. Anal., 32(1979), 1-32. 被引量:1

共引文献1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部