期刊文献+

若干可微广义凸模糊映射的特性及相互关系

The Feature and Relationship among the Several Generalized Convex Fuzzy Mappings under Differentiability
下载PDF
导出
摘要 由Buckley-Feuring定义的模糊可微性的概念,利用模糊映射的左右手函数讨论在可微条件下,伪凸模糊映射、严格拟凸模糊映射、强拟凸模糊映射和严格伪凸模糊映射的特点,深入讨论了四者之间的相互关系,分析了四种映射互相转化的条件及如何削减某些凸性规划条件和简化模糊规划问题。 We accept the concept of differentiability of a fuzzy mapping Buckley-Feuring put forward. The paper studies the feature of the generalized convex fuzzy mappings such as pseudo-convex fuzzy mapping, strict quasi-convex fuzzy mapping, strong quasi-convex fuzzy mapping and strict pseudo-convex fuzzy mapping under differentiability by its left and right-hand functions of its a-level sets. The relationship among them is further studied. The conditions under which the several mappings transform one another are also analyzed. The relationship and conditions can be used to weaken the conditions for some convex plannings and simplify the fuzzy programming problem.
作者 刘美
出处 《武汉工程职业技术学院学报》 2009年第4期49-53,57,共6页 Journal of Wuhan Engineering Institute
关键词 可微 拟凸模糊映射 严格拟凸模糊映射 强拟凸模糊映射 严格伪凸模糊映射 differentiability pseudo-convex fuzzy mapping strict quasi-convex fuzzy mapping strong quasi-convex fuzzy mapping strict pseudo-convex fuzzy mapping
  • 相关文献

参考文献9

  • 1Hsien-Chung Wu.Saddle point optimality conditions in fuzzyoptimization problems[].Fuzzy Optimization and DecisionMaking.2003 被引量:1
  • 2Motilal Panigrahi,Geetanjali Panda,Sudarsan Nanda.Convexfuzzy mapping with differentiability and its application in fuzzyoptimization[].European Journal of Operational Research. 被引量:1
  • 3Goetschel R,Voxman W.Elementary Calculus[].Fuzzy Sets and Systems.1986 被引量:1
  • 4Seikkala S.On the fuzzy initial value problem[].Fuzzy Sets and Systems.1987 被引量:1
  • 5Puri M L,Ralescu D A.Differentials of fuzzy functions[].Journal of Mathematical.1983 被引量:1
  • 6S. Nanda,K. Kar.Convex Fuzzy Mappings[].Fuzzy Sets and Systems.1992 被引量:1
  • 7Dubois D,Prade H.Towards fuzzy differential calculus[].Int J FSS.1982 被引量:1
  • 8Buckley J J,Feuring T.Introduction to fuzzy partial differential equations[].Fuzzy Sets and Systems.1999 被引量:1
  • 9Buckley J J,Thomas F.Fuzzy differential equations[].Fuzzy Sets and Systems.2000 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部