期刊文献+

高光谱遥感技术在水稻转入基因表达的检测指示作用研究 被引量:2

Detection of the Expression of Transgene in Rice Plant Based on Hyperspectral Remote Sensing Technique
下载PDF
导出
摘要 传统方法在转基因作物目的基因表达检测上做了很多工作,但仍有发展空间。该研究利用野外高光谱仪(ASD野外光谱仪),避免了实验室测量带来温度水分差异造成的影响,实地测量大田水稻样本光谱数据;通过引入内部聚类系数控制类内波段聚合度,使用均值光谱表征样本类光谱,计算与光合作用高度相关的边峰以及光化学植被指数等参数,快速定量了转基因组样本与亲本在光合作用波段的光谱表达差异。研究结果表明转入基因得到了表达、对样本产生了影响,同时发现面积参数适合描述样本差异,而光化学植被指数对样本差异尤为敏感。这些都证明高光谱遥感技术在水稻转入基因表达检测上具有良好指示作用和应用优势,前景看好。 The present study aims to identify the expression of transgene in given rice plant samples in certain conditions. To avoid external noise caused by temperature change and water-loss, field spectrum was collected with ASD field spectrometer in natural state. The study calculated the mean spectrum of samples as main data set analyzed which were controlled by inner clustering coefficient to ensure data quality. By mean spectrum, the noise from random distinctions in few individual cultivators, which could not be expressed in the class stably, could be weakened even with filtering. With the help of parameters, such as red edge and green peak, this study gave qualitative spectral differences between transgenic samples and their parents. The results show that the transgenes in rice plant were expressed and influenced the samples. Moreover, it was found that the parameters of area are more suitable for describing the differences/changes of the samples, while PRI and SR-PRI are more sensitive to indicate them. Most of the above results could be found on the continuum-removal spectrum curve of samples. These conclusive results demonstrate that hyperspectral remote sensing technique has good prospects and application potential in transgene expression detection and monitoring, especially in plant breeding process.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第1期202-205,共4页 Spectroscopy and Spectral Analysis
基金 香港特别行政区政府研究资助局项目(461907)资助
关键词 转基因水稻 高光谱 内聚系数 均值光谱 Transgenic rice Hyperspectral Inner-cc Mean spectrum
  • 相关文献

参考文献17

  • 1Gewin V. Nature, 2004, 427: 376. 被引量:1
  • 2Hubner P, Studer E, Luthy J. Food Control, 1999, 10: 353. 被引量:1
  • 3Nikolic Z, Taski-Ajdukovic K, et al. Food Research International, 2009, 42(3): 349. 被引量:1
  • 4Rogan G J, Dudin Y A, Lee T C, et al. Food Control, 1999, 10(6) : 407. 被引量:1
  • 5Garcla M C, Garcia B, et al. Food Chemistry, 2009, 113(4): 1212. 被引量:1
  • 6Ahmed F E. Trends Biotechnol. , 2002, 20: 215. 被引量:1
  • 7Griffiths K, Partis M L, et al. Review of Technologies for Detecting Genetically Modified Materials in Commodities and Food. Australian Government Analytical Laboratories, 2002, 1-3(Executive Summary). 被引量:1
  • 8Xie Liiuan, Ying Yibin, Ying Tiejin, et al. Analytica Chimica Acta, 2007, 584: 379. 被引量:1
  • 9Roussel S A, Hardy C L, et al. Society for Applied Spectroscopy, 2001, 55(10) :1425. 被引量:1
  • 10童庆禧,张兵,郑兰芬编著..高光谱遥感 原理、技术与应用[M].北京:高等教育出版社,2006:415.

二级参考文献11

  • 1Adams J M, Faure H, Faure-Denard L. Nature, 1990, 348: 711. 被引量:1
  • 2Demmig-Adams B, Adams B. Trends in Plant Science, 1994, (1): 21. 被引量:1
  • 3Gamon J A, Serrano L, Surfus J S. Oecologia, 1997, 112(4) : 492. 被引量:1
  • 4Penuelas J, Llusia J, Pinaol J, et al. International Journal of Remote Sensing, 1997, 18: 2863. 被引量:1
  • 5Penuelas J, Filella I, Gamon J A. New Phytologist, 1995, 131(3) : 291. 被引量:1
  • 6Guo J M, Trotter C M. International Journal of Remote Sensing, 2006, 27: 4677. 被引量:1
  • 7Barton C V M, North P R J. Remote Sensing of Environment, 2001, 78: 264. 被引量:1
  • 8Nakaji T, Oguma H, Fujinuma Y. International Journal of Remote Sensing, 2006, 27: 493. 被引量:1
  • 9Gamon J A, Pefluelas J, Field C B. Remote Sensing of Environment, 1992, 41 : 35. 被引量:1
  • 10Jaequemoud S, Baret F. Remote Sensing of Environment, 1990, 34: 75. 被引量:1

共引文献8

同被引文献33

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部