摘要
研究了浸入水中的柔性梁非线性自由振动,假设其底端具有线弹性扭转弹簧支撑,顶端附有不计体积的集中质量块。推导了梁的运动控制方程和边界条件,由于考虑了大挠度,法向运动和轴向运动是非线性耦合的,使用Morison方程给出了流体力的表达式,利用有限差分法和Runge-Kutta法数值分析了梁在真空中和在水中的自由振动,讨论了参数对振动模态、固有频率等的影响。
Free vibrations of a compliant beam in water are investigated, which is supported by a linear-elastic torsional spring at the base with a point mass at the free end. The motion equations and boundary conditions are derived. For large deflection, the equations for the normal and axial motion are non-linearly coupled. The fluid forces are then modeled with a semi-empirical Morison equation. The free responses in vacuum and the free response in water are analyzed by finite difference approach and Runge-Kutta method, and the influences of water parameters on the results are considered.
出处
《应用力学学报》
CAS
CSCD
北大核心
2009年第4期705-709,共5页
Chinese Journal of Applied Mechanics
基金
国家自然科学基金(10872124/A020601)
上海市自然科学基金(06ZR14037)
关键词
柔性梁
大挠度
自由振动
非线性耦合
有限差分法
compliant beam, large deflection, free vibration, non-linearly coupled, the finite difference approach