期刊文献+

基于改进遗传神经网络的优化预测方法及其在腹膜透析中的应用 被引量:1

An Optimal Predicting Method Based on Improved Genetic Algorithm Embedded in Neural Network and Its Application to Peritoneal Dialysis
原文传递
导出
摘要 本文描述了肾衰竭治疗过程中腹膜透析液体重吸收率(PFAR)的预测问题。提出了基于改进遗传神经网络的PFAR预测模型。在文章中分析了PFAR的重要性和透析过程的复杂性,将改进遗传算法用于神经网络初始权重的确定,然后再利用神经网络的局部搜索能力确定最优遗传神经网络模型。这种方法充分利用了遗传算法的全局搜索的能力和神经网络局部快速搜索的优点,使两种方法充分互补。与标准的遗传神经网络仿真比较结果表明,该方法提高了学习速度和预测精度。 This paper addresses the predicting problem of peritoneal fluid absorption rate(PFAR). An innovative predicting mode/was developed, which employed the improved genetic algorithm embedded in neural network for predicting the important PFAR index in the peritoneal dialysis treatment process of renal failure. The significance of PFAR and the complexity of dialysis process were analyzed. The improved genetic algorithm was used for defining the initial weight and bias of neural network, and then the neural network was used for finding out the optimal predicting model of PFAR. This method utilizes the global search capability of genetic algorithm and the local search advantage of neural network completely. For the purpose of showing the validity of the model, the improved optimal predicting model is compared with the standard hybrid method of genetic algorithm and neural network. The simulation results show that the predicting accuracy of the improved optimal neural network is greatly improved and the learning process needs less time.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2009年第6期1186-1190,共5页 Journal of Biomedical Engineering
基金 广州市科技计划项目资助(2008Z1-D081) 高等学校博士学科点专项科研基金资助课题(200805611070)
关键词 遗传算法 神经网络 预测 腹膜透析 Genetic algorithm Neural network Prediction Peritoneal dialysis
  • 相关文献

参考文献12

  • 1LAMEIRE N H, The impact of residual renal function on the adequacy of peritoneal dialysis[J]. Contrib Nephrol, 1998, 124:76-93. 被引量:1
  • 2WANG T, LINDHOLM B. CANUSA, DOQI, ADEMEX: what's next? [J]. Perit Dial Int, 2002, 22(5):555-562. 被引量:1
  • 3HEIMBURGER O, WANIEWSKI J, WERYNSKI A, et al. A quantitative description of solute and fluid transport during peritoneal dialysis[J]. Kidney Int, 1992, 41(5) : 1320-1332. 被引量:1
  • 4WANIEWSKI J, HEIMBURGER O, PARK M S, et al. Methods for estimation of peritoneal dialysate volume and reabsorption rate using macromolecular markers[J]. Perit Dial Int, 1994, 14(1):8-16. 被引量:1
  • 5AMICI G. Mathematical models for prescription and delivery in peritoneal dialysis[J]. Nephrol Dial Transplant, 1998, 13 (suppl 6) : 120-124. 被引量:1
  • 6GABUTTI L, VADILONGA D, MOMBELLI G,et al. Artificial neural networks improve the prediction of KT/V, follow- up dietary protein intake and hypotension risk in haemodialysis patients[J]. Nephrol Dial Tansplant, 2004,19 : 1204-1211. 被引量:1
  • 7FERNANDEZ E A, VALTUILLE R, WILLSHAW P,et al. Using artificial intelligence to predict the equilibrated postdialysis blood urea concentration[J]. Blood Purif, 2002,20(2): 189. 被引量:1
  • 8ZHANG M, HU Y M, WANG T, The predicting method of peritoneal fluid absorption rate based-on neural network[J]. Journal of Control Theory and Applications, 2003, 1 (1) : 82- 85. 被引量:1
  • 9LU C, SHI B X. Hybrid back-propagation/genetic algorithm for multilayer feedforward neural networks[J]. 5th International Conference on Signal Processing Proceedings, 2000,1; 571-574. 被引量:1
  • 10MELIN P, CASTILLO O. Intelligent adaptive control of nonlinear dynamical systems with a hybrid neuro-fuzzy-genetic approach[J]. Systems, Man, and Cybernetics, 2001, 3; 1508-1513. 被引量:1

同被引文献15

  • 1Tsipouras M G, Exarchos T P, Fotiadis D I, et al. Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling [ C ]. IEEE Trans on Information Technology in Biomedicine, 2008, 12 (4) : 447 - 458. 被引量:1
  • 2Setiawan N A, Venkatachalam P A, Hani A M. Diagnosis of coronary ar- tery disease using artificial intelligence based decision support system [ C ]. Proceedings of the International Conference on Man-Machine Sys- tems, BatuFerringhi, Penang, 2009. 被引量:1
  • 3Anooj P K. Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules [ J ]. Journal of King Sand University Computer and Information Sciences, 2012, 24 (8) : 27 - 40. 被引量:1
  • 4Ahmad F A, Isa A M, Hussain Z, et al. Intelligent medical disease diag- nosis using improved hybrid genetic algorithm muhilayer pereeptron net- work [J]. Journal of Medical Systems, 2013, 37(2) : 1 -8. 被引量:1
  • 5Mokeddem S, Atmani B, Mokeddem M. Supervised feature selection for diagnosis of coronary artery disease based on genetic algorithm [ C ]. Pro- ceedings of International Conference on Computer Science & Information Technology, 2013 : 41 - 51. 被引量:1
  • 6Vapnik V N. Statistical learning theory [ M]. New York: Wiley, 1989. 被引量:1
  • 7Abibullaev B, An J. Decision support algorithm for diagnosis of AD/HD using electroencephalograms [ J ]. Journal of Medical Systems, 2012, 36 (2) : 2675 - 2688. 被引量:1
  • 8Zcift A, Guelten A. Gentic algorithm wrapped Bayesian network feature selection applied to differential diagnosis of erythemato-squmous diseases [ J]. Digital Signal Processing, 2013, 23 ( 1 ) : 230 - 237. 被引量:1
  • 9Kocer S, Canal M R. Classifying epilepsy diseases using artificial neural networks and genetic algorithm [J]. Journal of Medical Systems, 2011, 35 (4) : 489 - 498. 被引量:1
  • 10Elveren E, Yumusak N. Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm [ J]. Journal of Medical Systems, 2011, 35(7) : 329 -332. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部