期刊文献+

Volterra方程数值解中带自适应步长控制的Runge-Kutta方法(英文) 被引量:1

Runge-Kutta Methods for Numerical Solution of Volterra Equations with Adaptive Step Size Control
下载PDF
导出
摘要 在本文中我们构造了解第二类Volterra方程的一般Runge-Kutta方法,并且研究了第二类Volterra方程数值解法的自适应步长控制。 In dais paper, general methods of Runge - Kutta for numerical solution of Volterra Equation of the second(V - Ⅱ) are constructed, we study the step size control for numerical solution of V - Ⅱ.
作者 贺福利
出处 《数学理论与应用》 2009年第4期1-5,共5页 Mathematical Theory and Applications
基金 国家自然科学基金(10871150)资助项目
关键词 第二类Volterra方程 数值解 Runge—Kutta方法 自适应步长控制 V- Ⅱ Volterra equation Numerical solution Runge- Kutta methods Adaptive step Size control
  • 相关文献

二级参考文献24

  • 1Apostolos Gerasoulis.On the existence of approximate solutions for singular integral equations of Cauchy type discretized by Gauss-Chebyshev quadrature formulae[J]. BIT . 1981 (3) 被引量:1
  • 2G. Tsamasphyros,P. S. Theocaris.Equivalence and convergence of direct and indirect methods for the numerical solution of singular integral equations[J]. Computing . 1981 (1) 被引量:1
  • 3G. J. Tsamasphyros,P. S. Theocaris.On the convergence of a Gauss quadrature rule for evaluation of Cauchy type singular integrals[J]. BIT . 1977 (4) 被引量:1
  • 4Elliott D.Orthogonal polynomials associated with singular integral equations having a Cauchy kernel. SIAM Journal on Mathematical Analysis . 1982 被引量:1
  • 5Kalandiya A I.On a direct method for solution of equation of wing theory and its application in theory of elasticity. Math. Sbornik . 1957 被引量:1
  • 6Du Jinyuan.Singular integral operators and singular quadrature operators associated with singular integral equations of the first kind and their applications.Acts Math. Science . 1995 被引量:1
  • 7Lu Jianke.Boundary Value Problems for Analytic Functions. World Scientific . 1993 被引量:1
  • 8Ioakimidis N I,Theocaris P S.A comparison between the direct and the classical numerical methods for the solution of Cauchy type singular integral equations. SIAM Journal on Numerical Analysis . 1980 被引量:1
  • 9Elliott D.A convergence theorem for singular integral equations. J. Austral.Math. Soc. Ser. B . 1981 被引量:1
  • 10Du Jinyuan.The quadrature formulas for singular integral of higher order.Chinese Math. Annales . 1985 被引量:1

共引文献11

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部