期刊文献+

面向非匀点云拟合的RSR移动最小二乘法 被引量:4

RSR moving least squares for non-uniform points cloud fitting
下载PDF
导出
摘要 针对传统的移动最小二乘法在非均匀分布的采样点集拟合中的不足,提出了影响域半径动态调整的移动最小二乘法(RSRMLS)。在传统移动最小二乘法(MLS)的基础上,根据拟合子区域采样点数据稀疏情况,该方法可自动调整MLS的半径区域大小。通过对相同数据点集的拟合比较,提出的RSRMLS拟合效果明显优于传统MLS。 In order to handle the non-uniform sampling points fitting,this paper presents an adaptive adjustment of the radius of influence domain with the moving least squares(RSRMLS).Based on the moving least squares(MLS) fitting,this method can automatically adjust the size of radius for MLS according to the consistency of the sampled data points.This approach is compared with traditional MLS on the same sampling points,and this method has more approximate fitting results than the traditional MLS.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第35期153-156,共4页 Computer Engineering and Applications
基金 浙江省重大科技专项No.2007C11022~~
关键词 影响域半径动态调整的移动最小二乘法(RSRMLS) 影响域半径 拟合 K-近邻 adaptive adjustment of the radius of influence domain with the moving least squares(RSRMLS) radius of influence domain fitting k-nearest neighbors
  • 相关文献

参考文献2

二级参考文献12

  • 1熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报,2004,16(7):909-912. 被引量:65
  • 2Kobbelt L P, Botsch M, Schwanecke U, et al. Feature sensitive surface extraction from volume data [A]. In:Computer Graphics Proceedings, Annual Conference Series, ACM, SIGGRAPH, Los Angeles, CA, 2001. 57~66 被引量:1
  • 3Goodsell. G. On finding p-th nearest neighbors of scattered points in two dimensions for small p [J]. Computer Aided Geometric Design, 2000,17(4): 387~ 392 被引量:1
  • 4Dickerson M T, Drysdale R L S, Sack J R. Simple algorithms for enumerating interpoint distances and finding k nearest neighbors [J ]. International Journal of Computational Geometry and Applications, 1992, 2(3): 221~239 被引量:1
  • 5Piegl L A, Tiller W. Algorithm for finding all k nearest neighbors [J]. Computer-Aided Design, 2002, 34(2): 167~172 被引量:1
  • 6Beckmann N,Krigel H P,Schneider R,et al.The R*-tree:an efficient and robust access method for points and rectangles[C]//Hector G M,Jagadish H V.Proc of the ACM SIGMOD Conf.Atlantic:[s.n.],1990:322-331. 被引量:1
  • 7White D A,Jain R.Similarity indexing with the SS-tree[C]//Stanley YWS.Proc of the 12th Int'l Conf on Data Engineering.New Orleans:IEEE ComputerSociety,1996:516-523. 被引量:1
  • 8Katayama N,Satoh S.The SR-tree:an index structure for high-dimensional nearest neighbor queries[C]//Peckham J.Proc of the ACM SIGMOD Conf.Tucson:[s.n.],1997:369-380. 被引量:1
  • 9Goodsell G.On finding p-th nearest neighbors of scattered points in two dimensions for small p[J].Computer Aided Geometric Design,2000,17(4):387-392. 被引量:1
  • 10Piegl L A,Tiller W.Algorithm for finding all K nearest neighbors[J].Computer Aided Design,2002,34(2):167-172. 被引量:1

共引文献71

同被引文献22

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部