期刊文献+

一种新的基于粒子群和模拟退火的聚类算法 被引量:5

New clustering algorithm based on Particle Swarm Optimization and simulated annealing
下载PDF
导出
摘要 提出了一种新的基于粒子群和模拟退火的聚类算法。每个粒子作为聚类问题的一个可行解组成粒子群,粒子的位置由聚类中心向量表示。为避免粒子群陷入局部最优解,结合聚类问题的实际特点,提出了利用模拟退火的概率突跳性的两个解决方案。实验结果表明,新算法增强了全空间的搜索能力,性能优于粒子群算法和传统的K-means算法,具有较好的收敛性,是一种有效的聚类算法。 A new clustering algorithm is proposed based on particle swarm optimization and simulated annealing.The particle swarm is composed of particles,and each particle is a possible solution of the clustering problem,the position of the particle is represented by cluster center vector.To escape from local optimum,two solutions are proposed using the probabilistic jumping property of simulated annealing algorithm combined with the clustering problem.The experimental results on different datasets show that the new algorithm has enhanced the global search ability,has better performance than particle swarm optimization and K-means algorithm,has better global convergence,and it is an effective clustering algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第35期139-141,191,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60874075 聊城大学科研基金(No.X071021)~~
关键词 粒子群优化 模拟退火 聚类 particle swarm optimization simulated annealing clustering
  • 相关文献

参考文献9

  • 1Sehm S Z,Ismail M A.K-means-type algorithm:A generalized convergence theorm and characterization of local optimality[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1984,6(1): 81-87. 被引量:1
  • 2Kennedy J,Eberhart R.Particle swarm optimi-zation[C]//Proc of the IEEE Int Conf on Neural Networks Piscatawav NJ 1995:1942- 1948. 被引量:1
  • 3Shi Y,Eberhart R C.Empirical study of Particle Swarm Optimization[C]//Proc of IEEE World Conference on Evolutionary Computation, 1999:6-9. 被引量:1
  • 4Kirkpatrick S,Gelatt C D,Veechi M P.Optimization by simulated annealing[J].Seience, 1983,220(4598 ) : 671-680. 被引量:1
  • 5刘靖明,韩丽川,侯立文.一种新的聚类算法——粒子群聚类算法[J].计算机工程与应用,2005,41(20):183-185. 被引量:25
  • 6Cui X,Potok T E,Palathingal P.Document clustering using particle swarm optimization[C]//Proc Swarm Intelligence Symposium,Pasadena, California, 2005 : 185-191. 被引量:1
  • 7Du Zhihua,Wang Yiwei,Ji Zhen.PK-means:A new algorithm for gene clustering[J].Computational Biology and Chemistry,2008 32 (4) : 243-247. 被引量:1
  • 8Kao Yi-Tung,Zahara E,Kao I-Wei.A hybridiz-ed approach to data elustering[J].Expert Systems with Applications,2008,34(3 ) : 1754- 1762. 被引量:1
  • 9Murphy P, Aha D.Repository of Machine Learning Databases[EB/OL] http://www.ics.uci.edu/MLRepository.html. 被引量:1

二级参考文献5

共引文献24

同被引文献65

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部