摘要
群G被称为弱s-置换性传递的群,对于它的子群H和K,若H在K中弱s-置换,K在G中弱s-置换,则H在G中弱s-置换.本文给出弱s-置换性、弱s-补性传递的可解群的结构以及每一子群在G中弱s-置换、弱s-补的群的结构.
A finite group G is called having weakly s-permutable transitivity property if, for subgroups H and K with H weakly s-permutable in K and K weakly s-permutable in G, it is always the case that H weakly s-permutable in G. In this paper, the structure of finite solvable groups whose subgroups having transitivity property on weakly s-permutable subgroups, weakly s-supplemented subgroups, respectively are further studied. Finally, the structure of a finite group G whose subgroups having weakly s-permutable property, weakly s-supplemented property, respectively are described.
出处
《纯粹数学与应用数学》
CSCD
2009年第4期649-653,共5页
Pure and Applied Mathematics
基金
国家自然科学基金(10771132)
SGRC(GZ310)
江苏省高校"青蓝工程"资助项目(2006)
关键词
弱s-置换子群
弱s-补子群
传递性
超可解
weakly s-permutable subgroups, weakly s-supplemented subgroups, transitivity property, super- solvable