期刊文献+

惯性时滞神经网络共振余维二分岔

Resonate Codimension Two Bifurcation in an Inertial Two-neuron System with Time Delay
下载PDF
导出
摘要 研究惯性时滞神经网络系统的共振余维二分岔,讨论了时滞的变化对系统余维二分岔的影响。利用Hopf分岔定理获得了系统余维二分岔存在的充要条件,借助中心流形定理和正规型理论约化了系统,从理论上分析了共振余维二分岔在平衡点附近的动力学行为,以及由此引发的分岔周期解的方向以及稳定性条件,最后通过实验仿真验证了理论分析的正确性。 It studied the resonate codimension two bifurcation in an inertial two - neuron system with time delay, and discussed the influence to the system by the time delay. A sufficient and necessary condition for the existence of codimension two bifurcation is obtained via Hopf bifurcation theorem. With aid of center manifold theorem and the normal form theory, the system is reduced to the center manifold, then the dynamic behavior in the vicinity of the resonate double Hopf bifurcation, including the direction of Hopf bifurcation and stability of bifurcating periodic solution, is investigated. The analytical results are found to be in good agreement with results obtained by the numerical simulations.
作者 刘群 祝红芳
出处 《南昌大学学报(理科版)》 CAS 北大核心 2009年第5期476-480,共5页 Journal of Nanchang University(Natural Science)
基金 国家973前期基础研究项目(2008CB317111) 国家自然科学基金项目(60573047) 重庆市自然科学基金(CSTC2007BB2386) 重庆市教委基础研究项目(KJ090803) 重庆邮电大学博士启动基金资助项目(A2009-10)
关键词 时滞 共振 惯性项 余维二分岔 time delay resonate inertial item codimension two bifurcation
  • 相关文献

参考文献7

  • 1Wheeler D W ,Schieve W C. Stability and Chaos in an Inertial Two - neuron System [ J ]. Physica D, 1997,105 : 267 - 284. 被引量:1
  • 2Babcock K L,Westerveh R M. Dynamics of Simple Electronic Neural Networks[J]. Physica D,1987,28:305 -306. 被引量:1
  • 3Angelaki D E, Correia M J. Models of Membrane Resonance in Pigeon Semicircular Canal Type II Hair Cells [ J]. Biol. Cybernet, 1991,65 : 1 - 10. 被引量:1
  • 4Li C G, Chen G R, Liao X F, etc. Hopf Bifurcation and Chaos in a Single Inertial Neuron Model with Time Delay [J]. Eur Phys J. B,2004,41:337 -343. 被引量:1
  • 5Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation Cambridge [ M ]. Cambridge University Press, 1981. 被引量:1
  • 6Liu Q, Liao X F, Guo S T, etc. Stability of Bifurcating Periodic Solutions for a Single Delayed Inertial Neuron Model Under Periodic Excitation[ J ]. Nonlinear Analysis : Real World Applications ,2009,10 (4) :2 384 -2 395. 被引量:1
  • 7裴利军,徐鉴.Stuart-Landau时滞系统非共振双Hopf分岔[J].振动工程学报,2005,18(1):24-29. 被引量:3

二级参考文献11

  • 1Guckenheimer J, Holmes P. Nonlinear Oscillations,dynamical systems and bifurcations of vector fields[M]. New York-Heidelberg-Berlin: Springer-Verlag,1983. 397-405. 被引量:1
  • 2LeBlanc V G, Langford W F. Classification and unfoldings of 1 : 2 resonant Hopf bifurcation[J]. Arch.Rational Mech. Anal. ,1996. 136(4)~305-357. 被引量:1
  • 3Bélair J. Campbell S A. Stability and bifurcations of equilibria in a multiple-delayed differential Equation[J]. SIAM Journal on Applied Mathematics.1994,54(5):1 402-1 424. 被引量:1
  • 4Xu J. Chung K W. Effects of time delayed position feedback on van Pol-Duffing oscillator[J]. Physica D,2003,180 ( 1-2 ) : 17-39. 被引量:1
  • 5Yu P. Yuan Y, Xu J. Study of double Hopf bifurcation and chaos for an oscillator with time delayed feedback[J]. Communications in Nonlinear Science and Numerical Simulation. 2002.7 (1) :69-91. 被引量:1
  • 6Reddy D V R, et al. Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks[J]. Physiea D,2000,144(3-4) :335-357. 被引量:1
  • 7Buono P L, Bélair J. Restrictions and unfolding of double Hopf bifurcation in functional differential equations[J]. J. Diff. Equa. ,2003,189(1):234-266. 被引量:1
  • 8Faria T, Magalhaes L T. Normal Form for retared functional differential equations with parameters and applications to Hopf bifrucation[J]. J. Diff. Ectua. ,1995,122(1) :181-200. 被引量:1
  • 9Niebur E, Schuster H G. Kammen D M. Collective frequencies and metastability in networks of limit-cycle oscillators with time delay[J]. Phys. Rev. Lett. ,1991,67(20):2 753-2 756. 被引量:1
  • 10Hale J K. Theory of functional differential equations[M]. New York-Heidelberg-Berlin: Springer-Verlag,1977. 165-190. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部