期刊文献+

差分方程x_(n+1)=1/(x_n+x_(n-1))的动力学分析 被引量:1

The Dynamics of The Difference Equation x_(n+1)=1/(x_n+x_(n-1))
下载PDF
导出
摘要 采用半环分析法研究差分方程xn+1=1/(xn+xn-1)(n=0,1,…)解列{xn}∞n=-1的特性。在此基础上,给出在初始值满足x-1,x0∈(0,∞)情况下,其平衡点-x=2/2是全局渐近稳定的严格理论证明。 In this paper, we investigate the property of the positive solutions of the difference equation x(n+1)=1/(xn+x(n+1)) for n = 0, 1,… with semieycle analysis method and give the globally asymptotic stability of its unique equilibrium -↑x=√1/2 with any positive initial conditions.
出处 《廊坊师范学院学报(自然科学版)》 2009年第6期14-17,21,共5页 Journal of Langfang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(10771196)
关键词 迭代差分方程 全局渐近稳定 半环分析法 recursive difference equation global asymptotic stability semicycle analysis
  • 相关文献

参考文献5

  • 1V.L. Kocic and G. Ladas. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications [M]. Kluwer Academic Pubhshers: Dordrecht, 1993. 被引量:1
  • 2Grove E.A. and Ladas G.. Periodicities in Nonlinear Difference Equations[ J]. Computers and Mathematics with Applications, 2004, 47:1487 - 1494. 被引量:1
  • 3El- MetwaUy H.. Grove E.A. and Ladas G., A global convergence with applications to periodic solutions[ J]. J. Math. Anal Appl., 2000, 245: 161- 170. 被引量:1
  • 4Xianyi. Li and Deming. Zhu. Two Rational Recursive Sequences[ J ]. J. Difference Equa. Appl., 2003,9 (9) : 833 - 839. 被引量:1
  • 5樊守芳.广义Fibonacci数列的极限.Journal of Qiqihar Teacher’s College(Natural Science),1996,1(16):14-15. 被引量:1

同被引文献3

  • 1V. L. Kocic and G. Ladas. Global Flehavior of Nonhnear Difference Equations of Higher Order with Applications [ M ]. Kluwer Academic Publishers: Dordrecht, 1993. 被引量:1
  • 2Grove E. A. and Ladas G.. Periodicities in Nonlinear Differ- ence Equations[ J]. Computers and Mathematics with Ap- plications, 2004, (47) : 1487 - 1494. 被引量:1
  • 3El- Metwally H., Grove E. A. and Ladas G.. A global conv- ergence with applications to periodic solutionsEJ]. J. Math. Anal. Appl. ,2000, (245) : 161 - 171. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部