期刊文献+

复合白噪声驱动的输运方程 被引量:2

The Stochastic Transport Equation Driven by Combined White Noises
下载PDF
导出
摘要 本文在现有Gauss白噪声理论体系及L′evy纯跳白噪声理论体系的基础上,讨论了复合L′evy白噪声分析的框架,并将Wick乘积、Hermite变换等概念推广到复合L′evy白噪声空间,同时给出了与复合L′evy白噪声空间对应的Hida分布空间的特征定理.最后,在本文的理论框架下,详细讨论了由复合L′evy白噪声驱动的随机输运方程在Hida分布空间中的解及其结构. In this paper, we develop a new framework of combined white noises basing on the existing Gaussian and pure jump Levy white noises. The Wick product, Hermite transform and the characterization theorem of Hida distribution space are generalized in this framework. Moreover, we solve the stochastic transport equation by the characterization theorem and discuss the solution in detail.
出处 《应用概率统计》 CSCD 北大核心 2009年第6期597-610,共14页 Chinese Journal of Applied Probability and Statistics
关键词 复合白噪声 Wick乘积 HERMITE变换 随机输运方程 Combined white noises, Wick product, Hermite transform, stochastic transport equation
  • 相关文献

参考文献9

  • 1Hida, T., White noise analysis and its applications, Proc. Int. Mathematical Conf., L.H.Y. Chen, North-Holland, 1982, 43-48. 被引量:1
  • 2Kondratiev, Y., Da silva, J.L. and Streit, L., Generalized Appell systems, Methods Funct. Anal. Topology, 3(1997), 28-61. 被引量:1
  • 3Kondratiev, Y., Da silva, J.L., Streit, L. and Us, G., Analysis on Poisson and Gamma spaces, Infin. Dim. Anal. Quantum Probab. Relat. Top., 1(1998), 91-117. 被引量:1
  • 4Holden, H., Oksendal, B., Uboe, J. and Zhang, T.-S., Stochastic Partial Differential Equations - A Modeling, White Noise Functional Approach, Birkhauser, 1996. 被引量:1
  • 5Proske, F., The stochatic transport equation driven by L~vy white noise, Comm. Math. Sci., 2(2004), 627-641. 被引量:1
  • 6Lokka, A., Oksendal, B. and Proske, F., Stochastic partial differential equations driven by Levy space time white noise, Annals of Appl. Prob., 14(2004), 1506-1582. 被引量:1
  • 7Benth, F.E. and Gjerde, J., A remark on the equivalence between Poisson and Gaussian stochastic partial differential equations, Pot. Anal., 8(1998), 179-193. 被引量:1
  • 8Di nunno, G., Oksendal, B. and Proske, F., White noise analysis for Levy processes, J. Func. Anal., 206(2004), 109-148. 被引量:1
  • 9Holden, H. and Oksendal, B., A white noise approach to stochastic differential equations driven by Wiener and Poisson processes, Nonlinear Theory of Generalized Functions, M. Grosser et al., Chapman Hall/CRC, 1999, 293-313. 被引量:1

同被引文献24

  • 1Yong Jiongmin, Zhou Xun Yu. Stochastic Controls: Hamiltonian Systems and HJB Equations[M]. New York: Springer, 1999, 157-184. 被引量:1
  • 2Фksendal B, Sulem A. Applied Stochastic Control of Jump Diffusion[M]. 2th edition, Berlin: Springer, 2007, 77-87. 被引量:1
  • 3Protter P. Stochastic Integration and Differential Equations[M]. 2th edition, Springer: Berlin Heidelberg New York, 2003, 78-84. 被引量:1
  • 4Holden H, Фksendal B, UbФe J, et al. Stochastic Partial Differential Equations-A Modeling, White Noise Functional Approach[M]. Boston: Birkhauser, 1996. 被引量:1
  • 5LindstrФm T, Фksendal B, UbФe J. Wick multiplication and It6ǒ-Skorohod stochastic differential equations[A]. in: Albeverio B, Fenstad J E, Holden H, Lindstrom T. Ideas and Methods in Mathematical Analysis, Stochastics and Applications[C]. Cambridge: Cambridge University Press, 1992. 183-206. 被引量:1
  • 6Benth F E. A note on population growth in a crowded stochastic environment[A], in: Korezlioglu H, Фksendal B, Ustünel A S. Stochastic Analysis and Related Topics 5[C]. Boston: Birkhauser, 1996. 111-119. 被引量:1
  • 7Li Ronghua, Pang W K, Wang Qinghe. Numerical analysis for stochastic age-dependent population equations with Poison jumps[J]. Journal of Mathematical Analysis and Applications, 2005, 327(2): 1214-1224. 被引量:1
  • 8LФkka A, Фksendal B, Proske F. Stochastic partial differential equations driven by Lévy space time white noise[J]. Annals of Applied Probability, 2004, 14(3):1506-1582. 被引量:1
  • 9KARATZAS I, OCONE D. A generalized Clark representation formula, with application to optimal portfolios [J]. Stochastics and Stochastic Reports,1991, 34(2):187-220. 被引量:1
  • 10HIDA Takeyuki. White noise analysis and its applications[J]. North-Holland Mathematical Studio, 1982, 74:43-48. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部