期刊文献+

基于SVM和GMM的视频运动对象分割算法 被引量:1

A Video Moving Objects Segmentation Algorithm Based on SVM and GMM
下载PDF
导出
摘要 针对传统的高斯混合模型分割方法易受复杂背景影响,且对前景对象的分割效果不理想的问题,提出了一种将高斯混合模型与支持向量机分类器相结合的算法。该算法首先将视频图像由高斯混合模型做初步二值化分割,同时将视频图像用训练后的支持向量机分类器进行像素分类,获取对应的前景块和背景块;然后,将支持向量机得到的分割模板和高斯混合模型分割的结果进行与运算,得到最终分割结果。实验结果表明,该算法显著减少了动态前景对象的分割错误,提高了分割质量。 The conventional Gaussian mixture method suffers from complex backgrounds,which brings about undesirable segmentation result. A novel approach was proposed. It integrated the Gaussian mixture model with a support vector machine classifier. Firstly,this method made preliminary segmentation to get binary image though GMM. Then the pixels in every frame were classified as background and foreground pixels which composed the corresponding background and foreground blocks. At last, the integration of SVM and GMM can be given simply by the intersection operation of segmentation results. Experimental results show this approach significantly decreases the false motion detection and improves segmentation quality of moving objects.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2009年第6期857-860,共4页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金资助项目(60774051)
关键词 支持向量机 高斯混合模型 复杂背景 分割模板 SVM GMM complex backgrounds segmentation template
  • 相关文献

参考文献6

  • 1LI L Y, HUANG W M, IRENE Y H, et al. Statistical modeling of complex backgrounds for foreground object detection [ J ]. Image Processing, IEEE Transactions, 2004,13 ( 11 ) : 1459 - 1472. 被引量:1
  • 2SAEED K,HOSSEIN E,AFSHIN E. Moving object removal in video sequence and background restoration using kalman filter [ C ]//Telecommunications 2008 International Symposium. [ S. l. ] : [ s. n. ], 2008 : 580 - 585. 被引量:1
  • 3YANG S Y, HSU C T. Background modeling from GMM likelihood combined with spatial and color coherency [ C]//IEEE International Conference on Image Processing. [S. l. ] :[s.n. ] ,2006:2801 -2804. 被引量:1
  • 4YANG H, TAN Y H, TIAN J W, et al. Accurate dynamic scene model for moving object detection[ C]// IEEE International Conference on Image Processing.[S. l. ] :[s.n. ],2007:157-160. 被引量:1
  • 5STAUFFER C,GRIMSON W E L. Adaptive background mixture models for real - time tracking [ C ]// Proc IEEE CVPR. [S. l. ]: Is. n. ] ,1999:246 -252. 被引量:1
  • 6CHNG C C,LIN C J. LIBSVM:a library for support vector machines [ ED/OL]. [ 2009 - 06 - 27 ]. http :// www. csie. ntu. edu. tw/- cjlin/libsvm. 被引量:1

同被引文献10

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部